CORC

浏览/检索结果: 共5条,第1-5条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Structural amelioration of 920 nm optically pumped semiconductor vertical external-cavity surface emitting laser (OPS-VECSEL) (EI CONFERENCE) 会议论文
2nd International Conference on Energy, Environment and Sustainable Development, EESD 2012, October 12, 2012 - October 14, 2012, Jilin, China
Liang X.; Wang L.; Ning Y.; Liu Y.
收藏  |  浏览/下载:16/0  |  提交时间:2013/03/25
920 nm optically pumped semiconductor vertical external-cavity surface emitting laser (OPS-VECSEL) has an important application in laser display. We constructed and optimized a 920 nm OPS-VECSEL with active region of In0.09Ga0.91As quantum well (QW) system pumped by 808 nm laser diode module. By the finite element method  self-consistent solutions of the semiconductor electronic and optical equations are realized to calculate the characteristics parameters of OPS-VECSEL. The performances of device especially the mode  the threshold and the optical-optical translation efficiency were analyzed by dealing with different number of QWs (1  2 and 3) in one period  QW depth  barrier width  the component and dimension of the non-absorption layer. We chose an improved structure of them. On this basis  we ameliorated the number of QW periods and the simulation showed that in order to obtain high performance device  the choice of the number of QW periods must be cautious. (2013) Trans Tech Publications  Switzerland.  
Structural amelioration of 920 nm optically pumped semiconductor vertical external-cavity surface emitting laser (OPS-VECSEL) 会议论文
2nd International Conference on Energy, Environment and Sustainable Development, EESD 2012, October 12, 2012 - October 14, 2012, Jilin, China
Liang X.; Wang L.; Ning Y.; Liu Y.
收藏  |  浏览/下载:12/0  |  提交时间:2014/05/15
The spectral feature analysis of semiconductor thin disk laser (EI CONFERENCE) 会议论文
Optoelectronic Materials and Devices II, November 2, 2007 - November 5, 2007, Wuhan, China
He C.-F.; Qin L.; Li J.; Cheng L.-W.; Liang X.-M.; Ning Y.-Q.; Wang L.-J.
收藏  |  浏览/下载:18/0  |  提交时间:2013/03/25
The semiconductor thin disk laser is a new type of semiconductor laser. This work gives the basic operation function of semiconductor disk laser  and analyses the heat effect by the experimentally measured photoluminescence spectrum of the laser chip at different pump power and different temperature. We can see that: with increasing pump power  the thermal effects of the gain material becomes seriously and causes the saturation of carrier lifetime  so the electron-hole pair created in the absorbtion layer have no enough time to rate to one of the wells  and the non-radiative recombination happens in the barrier. When the thermal effects becomes stronger  the chip will not lasing. This phenomenon is from the smaller energy offset between barrier and quantum well. We optimize the original structure design and experimental technology. A non-absorbing AlGaAs layer who is transparent to the pumping and laser wavelength is added to confine the carriers in the quantum wells. At the same time a DBR with double reflecting band is induced to improve the absorbing efficiency of the pumping light. The single QW is replaced by the three narrow QWs  This three QWs structure can add the quantum state of QW  increase the recombination probability of carriers in the QWs and reduce the heat effect. The chemical etch equipment is also improved to control the surface unevenness to be within 50 nm.  
Characterization of ZnO/Mg0.12Zn0.88O heterostructure grown by plasma-assisted molecular beam epitaxy (EI CONFERENCE) 会议论文
13th International Conference on Molecular Beam Epitaxy, August 22, 2004 - August 27, 2004, 13th International Conference on Molecular Beam Epitaxy, August 22, 2004 - August 27, 2004
Lu Y. M.; Wu C. X.; Wei Z. P.; Zhang Z. Z.; Zhao D. X.; Zhang J. Y.; Liu Y. C.; Shen D. Z.; Fan X. W.
收藏  |  浏览/下载:21/0  |  提交时间:2013/03/25
In this paper  Mg0.12Zn0.88O/ZnO heterostructures were fabricated on c-plane sapphire (Al2O3) substrates by plasma-assisted molecular beam epitaxy (P-MBE). The quality of the Mg 0.12Zn0.88O alloy thin film was characterized by X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED). Optical properties of the Mg0.12Zn0.88O/ZnO heterostructure were studied by absorption and photoluminescence (PL) spectra. At room temperature (RT)  Mg0.12Zn0.88O/ZnO heterostructures show two absorption edges originating from ZnO and Mg 0.12Zn0.88O layers  respectively. In PL spectra  two ultraviolet emission bands related to the ZnO layer and the Mg 0.12Zn0.88O layer were observed. The emission band from Mg0.12Zn0.88O layer dominates at moderately lower temperature  and the luminescence of ZnO becomes gradually important with increasing temperature. This is suggested to exist as a potential barrier in the interface and to restrict the relaxation of the carriers from the Mg 0.12Zn0.88O layer to ZnO layer. As the thickness of ZnO layer decreases  the emission from the Mg0.12Zn0.88O layer becomes weaker and weaker. When the ZnO thickness is up to 2 nm  only the luminescence of the ZnO layer is observed at RT. The quenching of the emission corresponding to the MgZnO layer indicates the existence of a strong injection process in the samples with thinner ZnO layer. 2005 Elsevier B.V. All rights reserved.  
Theoretical analysis of 980nm high power Vertical External-cavity Surface-emitting Semiconductor Laser (VECSEL) (EI CONFERENCE) 会议论文
ICO20: Lasers and Laser Technologies, August 21, 2005 - August 26, 2005, Changchun, China
He C.-F.; Lu G.-G.; Shan X.-N.; Sun Y.-F.; Li T.; Qin L.; Yan C.-L.; Ning Y.-Q.; Wang L.-J.
收藏  |  浏览/下载:15/0  |  提交时间:2013/03/25
By using bottom-emitting structure  we will develop laser diode (LD) pumped 980 nm VECSEL with active region of InGaAs/GaAsP/AlGaAs system. Because the thickness of barrier layer and absorption layer exceed that of quantum well  single well approximation model (KP method) can be used to calculate the band structure of VECSEL. The Schrodinger equation of finite deep potential well can be adopted to calculate the energy level structures of electron  heavy and light holes. According to the transition selection rule  we theoretically obtained the emitting wavelength of VECSEL and calculated quasi-Femi energy of valence band and conduction band based on the analysis of energy level structure of electron and holes. By analyzing the gain of strained quantum wells  we calculated the gain of VECSEL using transition matrix elements of electron  heavy and light holes. We give out the threshold gain  output power and other characteristic parameters. We will study the configuration of VECSEL and pumping scheme. We designed external cavity mirror  active region and bottom-emitting structure. A LD-pumped vertical external cavity surface-emitting laser whose output power is greater than 1.0 W can be predicted.  


©版权所有 ©2017 CSpace - Powered by CSpace