A Hybrid Inexact Optimization Method for Land-Use Allocation in Association with Environmental/Ecological Requirements at a Watershed Level
Qiu B. K.; Lu, S. S.; Zhou, M.; Zhang, L.; Deng, Y.; Song, C.; Zhang, Z.
2015
关键词multiobjective programming-model urban land spatial optimization use management lake areas uncertainty china system algorithm province
英文摘要In this study, an inexact stochastic fuzzy programming (ISFP) model is proposed for land-use allocation (LUA) and environmental/ecological planning at a watershed level, where uncertainties associated with land-use parameters, benefit functions, and environmental/ecological requirements are described as discrete intervals, probabilities and fuzzy sets. In this model, an interval stochastic fuzzy programming model is used to support quantitative optimization under uncertainty. Complexities in land-use planning systems can be systematically reflected, thus applicability of the modeling process can be highly enhanced. The proposed method is applied to planning land use/ecological balance in Poyang Lake watershed, China. The objective of the ISFP is maximizing net benefit from the LUA system and the constraints including economic constraints, social constraints, land suitability constraints, environmental constraints, ecological constraints and technical constraints. Modeling results indicate that the desired system benefit will be between [15.17, 18.29] x 10(12) yuan under the minimum violating probabilities; the optimized areas of commercial land, industrial land, agricultural land, transportation land, residential land, water land, green land, landfill land and unused land will be optimized cultivated land, forest land, grass land, water land, urban land, unused land and landfill will be [228234, 237844] ha, [47228, 58451] ha, [20982, 23718] ha, [33897, 35280] ha, [15215, 15907] ha, [528, 879] ha and [1023, 1260] ha. These data can be used for generating decision alternatives under different scenarios and thus help decision makers identify desired policies under various system-reliability constraints of ecological requirement and environmental capacity. Tradeoffs between system benefits and constraint-violation risks can be tackled. They are helpful for supporting (a) decision of land-use allocation and government investment; (b) formulation of local policies regarding ecological protection, environment protection and economic development; (c) analysis of interactions among economic benefits, system reliability and ecological requirements.
出处Sustainability
7
4
4643-4667
收录类别SCI
语种英语
ISSN号2071-1050
内容类型SCI/SSCI论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/38818]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Qiu B. K.,Lu, S. S.,Zhou, M.,et al. A Hybrid Inexact Optimization Method for Land-Use Allocation in Association with Environmental/Ecological Requirements at a Watershed Level. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace