Fast sol-gel synthesis of mesoporous Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries
Wang, Fuqing1,2; Chen, Jian1; Wang, Chong1; Yi, Baolian1
刊名journal of electroanalytical chemistry
2013
卷号688页码:123-129
关键词Lithium manganese silicate Nanocomposite Hydrochloric acid Propylene oxide Sol-gel method Lithium-ion battery
英文摘要a fast sal-gel process that differs in important details from previously reported methods for preparing li2mnsio4/c nanocomposite was reported. in the process, hydrochloric acid was used to enhance the hydrolysis of tetraethyl orthosilicate (teos) to obtain silanols firstly. and then propylene oxide was added to promote the condensation of the silanols to form a jelly-like sio2 gel precursor containing lithium and manganese sources in about 3 min at room temperature. the final product of li2mnsio4/c was obtained by calcining the gel precursor with sucrose. the structure, micro-morphology and electrochemical property of the as-prepared li2mnsio4/c nanocomposite were characterized by xrd, tem, n-2 adsorption-desorption, cyclic voltammetry (cv), galvanostatic charge-discharge, and electrochemical impedance spectroscopy (eis). the results indicate that the li2mnsio4/c nanocomposite with mesoporous structure is composed of 10-20 nm nanoparticles homogenously coated by the carbon. the electrochemical measurements reveal that the initial charge and discharge specific capacities of the prepared li2mnsio4/c nanocomposite are 275.2 mah g(-1) and 164.2 mah g(-1), respectively. after 60 cycles, the discharge capacity retention is 80%. the excellent electrochemical performance can be attributed to the nano-sized composites with a mesoporous structure and the in situ surface carbon coating. (c) 2012 elsevier b.v. all rights reserved.
WOS标题词science & technology ; physical sciences
类目[WOS]chemistry, analytical ; electrochemistry
研究领域[WOS]chemistry ; electrochemistry
关键词[WOS]cathode material ; electrode materials ; storage devices ; oxide aerogels ; anode material ; li ; lifepo4 ; hydrolysis ; composite ; surface
收录类别SCI
语种英语
WOS记录号WOS:000317158800021
公开日期2015-11-10
内容类型期刊论文
源URL[http://159.226.238.44/handle/321008/137872]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
作者单位1.Chinese Acad Sci, Dalian Inst Chem Phys, Adv Rechargeable Batteries Lab, Dalian 116023, Peoples R China
2.Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
推荐引用方式
GB/T 7714
Wang, Fuqing,Chen, Jian,Wang, Chong,et al. Fast sol-gel synthesis of mesoporous Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries[J]. journal of electroanalytical chemistry,2013,688:123-129.
APA Wang, Fuqing,Chen, Jian,Wang, Chong,&Yi, Baolian.(2013).Fast sol-gel synthesis of mesoporous Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries.journal of electroanalytical chemistry,688,123-129.
MLA Wang, Fuqing,et al."Fast sol-gel synthesis of mesoporous Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries".journal of electroanalytical chemistry 688(2013):123-129.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace