Interactions between leaf litter and soil organic matter on carbon and nitrogen mineralization in six forest litter-soil systems
Xiong Y. M. ; Zeng H. ; Xia H. P. ; Guo D. L.
2014
关键词Litter decomposition N release N transfer N immobilization Stoichiometry mean annual temperature net n mineralization nutrient release mass-loss decomposition rates quality stoichiometry translocation dynamics
英文摘要Leaf litter decomposes on the surface of soil in natural systems and element transfers between litter and soil are commonly found. However, how litter and soil organic matter (SOM) interact to influence decomposition rate and nitrogen (N) release remains unclear. Leaf litter and mineral soil of top 0-5 cm from six forests were incubated separately, or together with litter on soil surface at 25 A degrees C for 346 days. Litter N remaining and soil respiration rate were repeatedly measured during incubation. Litter carbon (C) and mass losses and mineral N concentrations in litter and soil were measured at the end of incubation. Net N transfer from soil to litter was found in all litters when incubated with soil. Litter incubated with soil lost more C than litter incubated alone after 346 days. For litters with initial C: N ratios lower than 52, net N-min after 346 days was 100 % higher when incubated with soil than when incubated alone. Litter net N-min rate was negatively related to initial C: N ratio when incubated with soil but not when incubated alone. Soil respiration rate and net N-min rate did not differ between soil incubated with litter and soil incubated alone. We conclude that soils may enhance litter decomposition rate by net N transfer from soil to litter. Our results together with studies on litter mixture decomposition suggest that net N transfer between decomposing organic matter with different N status may be common and may significantly influence decomposition and N release. The low net N-min rate during litter decomposition along with the small size of litter N pool compared to soil N pool suggest that SOM rather than decomposing litter is the major contributor to plant mineral N supply.
出处Plant and Soil
379
1-2
217-229
收录类别SCI
语种英语
ISSN号0032-079X
内容类型SCI/SSCI论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/29493]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Xiong Y. M.,Zeng H.,Xia H. P.,et al. Interactions between leaf litter and soil organic matter on carbon and nitrogen mineralization in six forest litter-soil systems. 2014.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace