Multiyear precipitation reduction strongly decreases carbon uptake over northern China
Zhang Q.
2014
关键词Drought Vegetation primary production Carbon uptake Northern China drought-induced reduction climate-change soil-moisture vegetation dynamics modeling analysis future climate forest respiration mortality balance
英文摘要Drought has been a concern in global and regional water, carbon, and energy cycles. From 1999 to 2011, northern China experienced a multiyear precipitation reduction that significantly decreased water availability as indicated by the Palmer Drought Severity Index and soil moisture measurements. In this study, a light use efficiency model (EC-LUE) and an ecosystem physiological model (IBIS) were used to characterize the impacts of long-term drought on terrestrial carbon fluxes in northern China. EC-LUE and IBIS models showed the reduction of averaged GPP of 0.09 and 0.05 Pg C yr-1 during 1999-2011 compared with 1982-1998. Based on the IBIS model, simulated ecosystem respiration experienced an insignificant decrease from 1999 to 2011. The multiyear precipitation reduction changed the regional carbon uptake of 0.011 Pg C yr-1 from 1982 to 1998 to a net source of 0.018 Pg C yr-1 from 1999 to 2011. Moreover, a pronounced decrease in maize yield in almost all provinces in the study region was found from 1999 to 2011 versus the average of yield from1978 to 2011. The largest maize yield reduction occurred in Beijing (2499kgha-1yr-1), Jilin (2180kgha-1yr-1), Tianjing (1923kgha-1yr-1), and Heilongjiang (1791kgha-1yr-1), and the maize yield anomaly was significantly correlated with the annual precipitation over the entire study area. Our results revealed that recent climate change, especially drought-induced water stress, is the dominant cause of the reduction in the terrestrial carbon sink over northern China.
出处Journal of Geophysical Research-Biogeosciences
119
5
881-896
收录类别SCI
语种英语
ISSN号2169-8953
内容类型SCI/SSCI论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/29434]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Zhang Q.. Multiyear precipitation reduction strongly decreases carbon uptake over northern China. 2014.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace