A new forecasting index for solar wind velocity based on EIT 284 angstrom observations
Luo, B. X. ; Zhong, Q. Z. ; Liu, S. Q. ; Gong, J. C.
刊名Solar Physics
2008
卷号250期号:1页码:159-170
关键词Sun: EUV emission Sun: Solar wind
ISSN号0038-0938
通讯作者北京8701信箱
英文摘要Various solar wind forecasting methods have been developed during the past decade, such as the Wang – Sheeley model and the Hakamada – Akasofu – Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area AM on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vršnak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 Å images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and AM factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R = 0.89. For comparison we also analyze the data in the same period (DOY 25 – 125, 2005) as Vršnak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas AM for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R = 0.70, whereas for AM and v the correlation coefficient is R = 0.62. The average relative difference between the calculated and the observed values is |δ| ≈ 12.15%. Furthermore, for the ten peaks during the analysis period, Pch and v show a correlation coefficient of R = 0.78, and the average relative difference between the calculated and the observed peak values is |δ| ≈ 5.83%.Moreover, the Pch factor can eliminate personal bias in the forecasting process, which existed in the method using CH area as input parameter, because CH area depends on the CH-boundary estimate but Pch does not. Until now the CH-boundary could not be easily determined since no quantitative criteria can be used to precisely locate CHs from observations, which led to differences in forecasting accuracy.
学科主题空间环境
收录类别SCI
原文出处http://www.springerlink.com/content/q2455h105773547m/fulltext.pdf
语种英语
内容类型期刊论文
源URL[http://ir.cssar.ac.cn/handle/122/297]  
专题国家空间科学中心_空间环境部
推荐引用方式
GB/T 7714
Luo, B. X.,Zhong, Q. Z.,Liu, S. Q.,et al. A new forecasting index for solar wind velocity based on EIT 284 angstrom observations[J]. Solar Physics,2008,250(1):159-170.
APA Luo, B. X.,Zhong, Q. Z.,Liu, S. Q.,&Gong, J. C..(2008).A new forecasting index for solar wind velocity based on EIT 284 angstrom observations.Solar Physics,250(1),159-170.
MLA Luo, B. X.,et al."A new forecasting index for solar wind velocity based on EIT 284 angstrom observations".Solar Physics 250.1(2008):159-170.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace