Numerical simulation of multi‑field coupling in geothermal reservoir heat extraction of enhanced geothermal systems
Ceng Z(曾智); Shen WJ(沈伟军); Wang MC(王明粲); Li ZY(李志宇); Wang XY; Ding JH
刊名Journal of Petroleum Exploration and Production Technology
2024-04
页码1-12
DOI10.1007/s13202-024-01775-x
英文摘要

The coupled analysis of multi-field heat and mass transfer in geothermal reservoirs is a pivotal concern within the realm of geothermal rock exploitation. It holds significant implications for the assessment of thermal energy capacity and the formulation of reservoir optimization strategies in the context of geothermal rock resources. Parameters governing production, along with fracture network characteristics (such as injection well temperature, injection well pressure, fracture width, and fracture network density), exert an influence on enhanced geothermal systems (EGS) heat production. In this study, aiming to comprehend the dynamic heat generation of EGS during prolonged exploitation, a coupling of various fields including permeation within the rock formations of geothermal reservoirs and the deformation of these rocks was achieved. In this study, we formulated the governing equations for the temperature field, stress field, and permeability field within the geothermal reservoir rock. Subsequently, we conducted numerical simulations to investigate the heat transfer process in an enhanced geothermal system. We analyzed the effects of injection well temperature, injection well pressure, primary fracture width, and secondary fracture density on the temperature distribution within the reservoir and the thermal power output of the production well. The research findings underscore that ill-conceived exploitation schemes markedly accelerate the thermal breakthrough rate of production wells, resulting in a diminished rate of geothermal resource extraction from the geothermal reservoir rock. Variations in influent well temperature and secondary fracture density exhibit an approximately linear impact on the output from production wells. Crucially, injection well pressure and primary fracture width emerge as pivotal factors influencing reservoir output response, with excessive widening of primary fractures leading to premature thermal breakthrough in production wells.

分类号二类/Q1
URL标识查看原文
语种英语
内容类型期刊论文
源URL[http://dspace.imech.ac.cn/handle/311007/94779]  
专题力学研究所_流固耦合系统力学重点实验室(2012-)
通讯作者Shen WJ(沈伟军)
作者单位1.CNPC Engineering Technology Research and Development Company Limited
2.School of Engineering Science, University of Chinese Academy of Sciences
3.Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Ceng Z,Shen WJ,Wang MC,et al. Numerical simulation of multi‑field coupling in geothermal reservoir heat extraction of enhanced geothermal systems[J]. Journal of Petroleum Exploration and Production Technology,2024:1-12.
APA 曾智,Shen WJ,王明粲,李志宇,Wang XY,&Ding JH.(2024).Numerical simulation of multi‑field coupling in geothermal reservoir heat extraction of enhanced geothermal systems.Journal of Petroleum Exploration and Production Technology,1-12.
MLA 曾智,et al."Numerical simulation of multi‑field coupling in geothermal reservoir heat extraction of enhanced geothermal systems".Journal of Petroleum Exploration and Production Technology (2024):1-12.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace