Combined effects of salinity and polystyrene microplastics exposure on the Pacific oysters Crassostrea gigas: Oxidative stress and energy metabolism
Du, Yunchao1,2,3; Zhao, Jianmin1,3; Teng, Jia1,2,3; Ren, Jingying1,2,3; Shan, Encui1,2,3; Zhu, Xiaopeng1,2,3; Zhang, Wenjing3; Wang, Lei3; Hou, Chaowei2,3; Wang, Qing1,3,4
刊名MARINE POLLUTION BULLETIN
2023-08-01
卷号193页码:13
关键词Microplastics Salinity Metabolomics Oxidative stress Energy metabolism Mollusk
ISSN号0025-326X
DOI10.1016/j.marpolbul.2023.115153
通讯作者Wang, Qing(qingwang@yic.ac.cn)
英文摘要Microplastics (MPs) pollution and salinity variation are two environmental stressors, but their combined effects on marine mollusks are rarely known. Oysters (Crassostrea gigas) were exposed to 1 x 104 particles L-1 spherical polystyrene MPs (PS-MPs) of different sizes (small polystyrene MPs (SPS-MPs): 6 & mu;m, large polystyrene MPs (LPS-MPs): 50-60 & mu;m) under three salinity levels (21, 26, and 31 psu) for 14 days. Results demonstrated that low salinity reduced PS-MPs uptake in oysters. Antagonistic interactions between PS-MPs and low salinity mainly occurred, and partial synergistic effects were mainly induced by SPS-MPs. SPS-MPs induced higher lipid per -oxidation (LPO) levels than LPS-MPs. In digestive glands, low salinity decreased LPO levels and glycometabolism-related gene expression, which was related to salinity levels. Low salinity instead of MPs mainly affected metabolomics profiles of gills through energy metabolism and osmotic adjustment pathway. In conclusion, oysters can adapt to combined stressors through energy and antioxidative regulation.
WOS关键词INTEGRATED BIOMARKER RESPONSE ; MULTIPLE STRESSORS ; MARINE-ENVIRONMENT ; GENE-EXPRESSION ; AMINO-ACIDS ; MUSSELS ; SEA ; IDENTIFICATION ; TISSUES ; SYSTEM
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology
语种英语
WOS记录号WOS:001027495500001
资助机构National Natural Science Foundation of China ; Strategic Priority Research Program of the Chinese Academy of Sciences ; National Key Research and Development Program ; Two-Hundred Talents Plan of Yantai
内容类型期刊论文
源URL[http://ir.yic.ac.cn/handle/133337/33375]  
专题中国科学院牟平海岸带环境综合试验站
通讯作者Wang, Qing
作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Res & Dev Ctr Efficient Utilizat Coastal Bioresour, Yantai 264003, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Muping Coastal Environm Res Stn, Yantai 264003, Peoples R China
4.Chinese Acad Sci, Yantai Inst Coastal Zone Res, 17 Chunhui Rd, Yantai 264003, Shandong, Peoples R China
推荐引用方式
GB/T 7714
Du, Yunchao,Zhao, Jianmin,Teng, Jia,et al. Combined effects of salinity and polystyrene microplastics exposure on the Pacific oysters Crassostrea gigas: Oxidative stress and energy metabolism[J]. MARINE POLLUTION BULLETIN,2023,193:13.
APA Du, Yunchao.,Zhao, Jianmin.,Teng, Jia.,Ren, Jingying.,Shan, Encui.,...&Wang, Qing.(2023).Combined effects of salinity and polystyrene microplastics exposure on the Pacific oysters Crassostrea gigas: Oxidative stress and energy metabolism.MARINE POLLUTION BULLETIN,193,13.
MLA Du, Yunchao,et al."Combined effects of salinity and polystyrene microplastics exposure on the Pacific oysters Crassostrea gigas: Oxidative stress and energy metabolism".MARINE POLLUTION BULLETIN 193(2023):13.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace