Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration
Tang WQ(唐伟奇); Zhang K(张坤); Chen TY(陈天宇); Wang Q(汪球); Wei BC(魏炳忱)
刊名JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
2023-01
卷号132页码:144-153
关键词Energetic structural materials High-entropy alloys Phase transformation Ballistic tests
ISSN号1005-0302
DOI10.1016/j.jmst.2022.05.043
英文摘要Energetic structural materials (ESMs) integrated a high energy density and rapid energy release with the ability to serve as structural materials. Here, a novel triple-phase TiZrHfTa0.7W0.3 high-entropy alloy (HEA) was fabricated and investigated as a potential ESM. A hierarchical microstructure was obtained with a main metastable body-centered-cubic (BCC) matrix with distributed Ta-W-rich BCC precipitates of various sizes and interwoven hexagonal close-packed (HCP) lamellar nano-plates. The compressive mechanical properties were tested across a range of strain rates and demonstrated a brittle-to-ductile transition as the strain rate increased while maintaining a high ultimate strength of approximately 2.5 GPa. This was due to the phase transformation from metastable matrix BCC to HCP structures. In addition, during the dynamic deformation, metal combustion originating from the failure surface was observed. Furthermore, the composition of the fragments was studied, and the results indicated that the addition of tungsten promoted combustion. Finally, the potential application of this HEA was evaluated by high-velocity penetration tests, and the results were compared to other typical structural materials for penetrators and bullets. A comparison was conducted by assessing the geometries of the penetration channel employing two dimensionless parameters normalized by the projectile size, representing longitudinal and lateral damage, respectively. The normalized depth of the TiZrHfTa0.7W0.3 HEA projectile was comparable to those of the other investigated materials, but the normalized diameter was the largest, showing an excellent ability to deliver lateral damage. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
分类号一类
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:000826757600008
资助机构National Natural Science Foundation of China [51401028, 51271193, 11790292] ; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB22040303] ; Innovation Program [237099000000170004]
其他责任者Zhang, K ; Wei, BC (corresponding author), Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China.
内容类型期刊论文
源URL[http://dspace.imech.ac.cn/handle/311007/92659]  
专题力学研究所_高温气体动力学国家重点实验室
作者单位1.{Wang Qiu} Chinese Acad Sci Inst Mech State Key Lab High Temp Gas Dynam Beijing 100190 Peoples R China
2.{Tang Weiqi, Zhang Kun, Chen Tianyu, Wang Qiu, Wei Bingchen} Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China
3.{Tang Weiqi, Zhang Kun, Chen Tianyu, Wei Bingchen} Chinese Acad Sci Inst Mech Key Lab Micrograv Natl Micrograv Lab Beijing 100190 Peoples R China
推荐引用方式
GB/T 7714
Tang WQ,Zhang K,Chen TY,et al. Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2023,132:144-153.
APA 唐伟奇,张坤,陈天宇,汪球,&魏炳忱.(2023).Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,132,144-153.
MLA 唐伟奇,et al."Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 132(2023):144-153.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace