Saline-alkali land amendment and value development: Microalgal biofertilizer for efficient production of a halophytic crop - Chenopodium quinoa
Ma, Chen6,7; Lei, Chun-Yan6,7; Zhu, Xiao-Li6,7; Ren, Cheng-Gang5; Liu, Ning4; Liu, Zheng-Yi5; Du, Hong2,3; Tang, Tao1; Li, Run-Zhi7; Cui, Hong-Li6,7
刊名LAND DEGRADATION & DEVELOPMENT
2022-11-11
页码13
关键词land amendment organic matter photosynthesis quinoa saline-alkali tolerant algae stress alleviation
ISSN号1085-3278
DOI10.1002/ldr.4508
通讯作者Cui, Hong-Li(cuihongli@sxau.edu.cn)
英文摘要Saline-alkali land amendment and value development should be conducted simultaneously, and microalgal biofertilizer may provide an efficient solution. Here, a saline-alkali tolerant algae was selected and applied to saline-alkali land to reveal its effects on land amendment and quinoa production. The results showed that Chlorella pyrenoidosa showed best growth and photosynthetic characteristics with increasing saline-alkali stress. Whether planting quinoa (Chenopodium quinoa Longli No. 1) or not, the application of C. pyrenoidosa supplied soil available nutrients, held water retention, and notably the organic matter of saline-alkali land with quinoa cultivation after algal maximum dose (OD680 = 2.0) showed 64.7% more content than the control. Saline-alkali land caused 23.7% yield loss of quinoa, which was attributed to organic lack (3.093 g kg(-1)) and saline-alkali conditions (pH 9.49 and 119.3 mS m(-1) electrical conductivity). Algal addition improved the chlorophyll synthesis and effective quantum yield of quinoa, enhanced more absorbed light energy to involve in photosynthesis rather than heat dissipation, and promoted the synthesis of osmotic regulatory substances (soluble sugar and protein) and antioxidant (anthocyanin) to alleviated osmotic and oxidative stresses. The growth improvement of quinoa confirmed the greater effect of stress alleviation than growth stimulation that reflected 41.7% and 28.6% yield increases in saline-alkali and nonsaline-alkali lands. Overall, saline-alkali tolerant alga adjusted overground and underground parts, including amending soil properties as organic addition and nutrient supply, and strengthening the tolerance of quinoa to saline-alkali environment. This assessment supports a sustainable practice of applying stress tolerant alga for land amendment and halophytic crop production to develop saline-alkali land value.
WOS关键词SALT STRESS ; BIOSTIMULANT ; TOLERANCE
WOS研究方向Environmental Sciences & Ecology ; Agriculture
语种英语
WOS记录号WOS:000881857200001
资助机构National Key Research and Development Program of China ; Science and Technology Major Project of Shanxi Province, China ; State Key Laboratory of Integrative Sustainable Dryland Agriculture ; Shanxi Agricultural University ; National Natural Science Foundation of China ; Outstanding Doctor to Work in Shanxi Province Research Project ; Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi ; Key Research and Development Program of Yantai ; Science and Technology Service Network Initiative
内容类型期刊论文
源URL[http://ir.yic.ac.cn/handle/133337/31993]  
专题海岸带生物学与生物资源利用重点实验室
通讯作者Cui, Hong-Li
作者单位1.Chinese Acad Sci, Shanghai Adv Res Inst, CAS Key Lab Low Carbon Convers Sci & Engn, Shanghai, Peoples R China
2.Shantou Univ, Coll Sci, STU UNIVPM Joint Algal Res Ctr, Shantou, Peoples R China
3.Shantou Univ, Coll Sci, Guangdong Prov Key Lab Marine Biotechnol, Inst Marine Sci, Shantou, Peoples R China
4.Tianjin Agr Univ, Sch Fisheries, Tianjin, Peoples R China
5.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai, Peoples R China
6.Shanxi Agr Univ, State Key Lab Integrat Sustainable Dryland Agr Pr, Taiyuan, Peoples R China
7.Shanxi Agr Univ, Coll Agr, Inst Mol Agr & Bioenergy, Taigu, Shanxi, Peoples R China
推荐引用方式
GB/T 7714
Ma, Chen,Lei, Chun-Yan,Zhu, Xiao-Li,et al. Saline-alkali land amendment and value development: Microalgal biofertilizer for efficient production of a halophytic crop - Chenopodium quinoa[J]. LAND DEGRADATION & DEVELOPMENT,2022:13.
APA Ma, Chen.,Lei, Chun-Yan.,Zhu, Xiao-Li.,Ren, Cheng-Gang.,Liu, Ning.,...&Cui, Hong-Li.(2022).Saline-alkali land amendment and value development: Microalgal biofertilizer for efficient production of a halophytic crop - Chenopodium quinoa.LAND DEGRADATION & DEVELOPMENT,13.
MLA Ma, Chen,et al."Saline-alkali land amendment and value development: Microalgal biofertilizer for efficient production of a halophytic crop - Chenopodium quinoa".LAND DEGRADATION & DEVELOPMENT (2022):13.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace