Numerical Investigation of Aerodynamic Separation Schemes for Two-Stage-to-Orbit-like Two-body System
Wang Y(王粤)1,2; Wang YP(汪运鹏)1,2; Jiang ZL(姜宗林)1,2
刊名Aerospace Science and Technology
2022-12
卷号131期号:Part A页码:107995
关键词Two-stage to orbit Numerical simulation Stage separation Hypersonic flow Aerodynamic interference
ISSN号1270-9638
DOI10.1016/j.ast.2022.107995
英文摘要

Two-stage-to-orbit (TSTO) hypersonic vehicle is considered one of the most promising next-generation reusable launch vehicle (RLV) systems for its efficiency and reliability, but the safe separation of two-body system determines the success of TSTO missions. Hypersonic flows around a TSTO-like two-body system are studied by CFD (computational fluid dynamics) dynamic simulations at Mach 7. The TSTO model, which consists of two three-dimensional (3-D) wedges as orbiter and booster, is used to investigate the interstage aerodynamic interferences and separation characteristics with different stage separation schemes. This paper analyzes in detail the transverse stage separation (TSS) scheme, where the orbiter moves along the direction normal to the upper surface of the booster. Besides, the longitudinal stage separation (LSS) scheme, in which the orbiter moves rapidly along the flight direction of the booster, is proposed. The numerical results of dynamic simulation show that the complex interstage aerodynamic interference is accompanied by the combined action, including the disturbance of wave/boundary-layer interaction, shock/wake-flow interaction, and a horseshoe vortex (or a “˄” vortex). Moreover, the flow characteristics and the physical mechanism of TSTO separation are clarified by analyzing the changes of flow structure and the topologies of 3-D separation flow. The intensity of the aerodynamic interference increases with increasing angle of incidence (AoI), but decreases with the increase of clearance during TSS. The ideal values of AoI for TSTO TSS are 6° and 8°. For LSS, the orbiter can safely separate from the booster at angle of attack (AoA) = 5° and 10° cases while the collision occurs at AoA = 0° case. The proper AoA value of the safe LSS is 5°. Since the interference load on the stages in LSS is smaller than that in TSS, the LSS is ideal for stage separation of TSTO.

学科主题气体动力学 ; 计算流体力学 ; 应用力学 ; 航空、航天科学技术基础学科
分类号一类
语种英语
其他责任者Wang YP(汪运鹏)(1,2)
内容类型期刊论文
源URL[http://dspace.imech.ac.cn/handle/311007/90455]  
专题力学研究所_高温气体动力学国家重点实验室
通讯作者Wang YP(汪运鹏)
作者单位1.State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Scineces
2.School of Engineering Sciences, University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Wang Y,Wang YP,Jiang ZL. Numerical Investigation of Aerodynamic Separation Schemes for Two-Stage-to-Orbit-like Two-body System[J]. Aerospace Science and Technology,2022,131(Part A):107995.
APA Wang Y,Wang YP,&Jiang ZL.(2022).Numerical Investigation of Aerodynamic Separation Schemes for Two-Stage-to-Orbit-like Two-body System.Aerospace Science and Technology,131(Part A),107995.
MLA Wang Y,et al."Numerical Investigation of Aerodynamic Separation Schemes for Two-Stage-to-Orbit-like Two-body System".Aerospace Science and Technology 131.Part A(2022):107995.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace