CORC  > 兰州理工大学  > 兰州理工大学
Effect of cathode operation parameters on the performance of proton exchange membrane fuel cell with curved wing vortex generator by response surface method
Yang, Laishun1; Shi, Luhao1; Cui, Weiwei1; Xu, Yichao1; Mao, Jianghai1; Li, Yongtong2; Jiang, Dongfang3; Yue, Guangxi1,4
刊名Energy Science and Engineering
2022
关键词Cathodes Channel flow Numerical methods Proton exchange membrane fuel cells (PEMFC) Stoichiometry Surface properties Vortex flow Combined effect Effect of cathode Fuel cell system Operating condition Performance Power densities Proton-exchange membranes fuel cells Response surfaces methods System efficiency Vortex generators
DOI10.1002/ese3.1258
英文摘要With the increasing popularity of fuel cells, improving their power density and the fuel cell system efficiency has become very topical. This study used the curved wing vortex generator to generate a secondary flow in the cathode flow channel to improve the performance of the proton exchange membrane fuel cell (PEMFC). The curved wing's structure and arrangement effects on the performance of fuel cells were numerically simulated. Next, to summarize the combined effects of cathode operating conditions on the performance of PEMFC, this study used the response surface method to assess the influence of operating conditions variables on the performance target of PEMFC with curved wings. The combined effects of cathode operating conditions, namely temperature, pressure, reactant stoichiometry, and relative humidity, on the system efficiency and power density of the fuel cell system were investigated. The predictive correlations between these variables were also fitted. The installation of curved wings promoted the diffusion of reactants, as well as improved the uniformity of temperature distribution and the discharge of liquid water in the fuel cell, enhancing its overall performance. Among the four operating parameters under study, the most significant effect on the fuel cell power density was provided by the temperature, followed by pressure, humidity, and reactant stoichiometry. The fuel cell efficiency was the most significantly improved by increasing the relative humidity, while temperature increase had the second-best impact, followed by pressure, and reactant stoichiometry. © 2022 The Authors. Energy Science & Engineering published by Society of Chemical Industry and John Wiley & Sons Ltd.
WOS研究方向Energy & Fuels
语种英语
出版者John Wiley and Sons Ltd
WOS记录号WOS:000829376600001
内容类型期刊论文
源URL[http://ir.lut.edu.cn/handle/2XXMBERH/159393]  
专题兰州理工大学
作者单位1.Clean Energy Lab, College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, China;
2.Department of Process Equipment and Control Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China;
3.State Grid Corporation of China, State Grid Energy Research Institute Co. Ltd., Beijing, China;
4.Department of Energy and Power Engineering, Tsinghua University, Beijing, China
推荐引用方式
GB/T 7714
Yang, Laishun,Shi, Luhao,Cui, Weiwei,et al. Effect of cathode operation parameters on the performance of proton exchange membrane fuel cell with curved wing vortex generator by response surface method[J]. Energy Science and Engineering,2022.
APA Yang, Laishun.,Shi, Luhao.,Cui, Weiwei.,Xu, Yichao.,Mao, Jianghai.,...&Yue, Guangxi.(2022).Effect of cathode operation parameters on the performance of proton exchange membrane fuel cell with curved wing vortex generator by response surface method.Energy Science and Engineering.
MLA Yang, Laishun,et al."Effect of cathode operation parameters on the performance of proton exchange membrane fuel cell with curved wing vortex generator by response surface method".Energy Science and Engineering (2022).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace