CORC  > 过程工程研究所  > 中国科学院过程工程研究所
Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness
Du, Guangqing1,2; Zhu, Chao1,2; Xu, Mengmeng3; Wang, Lan4; Yang, Shang-Tian3; Xue, Chuang1,2
刊名GREEN CHEMISTRY
2021-03-07
卷号23期号:5页码:2155-2168
ISSN号1463-9262
DOI10.1039/d0gc03993d
英文摘要Under stress, Clostridium acetobutylicum sporulates and halts its metabolism, which limits its use in industrial acetone-butanol-ethanol (ABE) fermentation. It is challenging to manipulate the highly regulated sporulation program used by clostridia for survival. Four orphan histidine kinases (HKs) involved in the phosphorylation of Spo0A, a global regulator, were found to control sporulation, cell growth, and metabolism (acidogenesis and solventogenesis). Single knockout of cac3319 aborted sporulation at the initiation stage but enhanced butanol tolerance and production, whereas cac0437 knockout caused premature sporulation and inhibited the transition from acidogenesis to solventogenesis, resulting in early autolysis and low butanol production. No solvent was produced when both cac3319 and cac0903 were knocked out because the mutant lost the megaplasmid carrying solventogenesis genes. On the other hand, a mutant with double knockouts of cac3319 and cac0323 showed enhanced butanol production of >20 g L-1 by a repeated batch fermentation in a fibrous bed bioreactor, which enabled in situ product recovery via vapor stripping-vapor permeation to achieve the highest butanol production of 441.9 g L-1 ever reported. This study elucidated the regulatory roles of 4 HKs in controlling clostridial sporulation and solventogenesis with morphological, transcriptomics, and fermentation kinetics analyses, and demonstrated combinatory knockouts of HKs as a novel metabolic engineering approach to abort sporulation and enhance butanol production in ABE fermentation suitable for industrial application.
资助项目National Natural Science Foundation of China (NSFC)[21878035] ; National Natural Science Foundation of China (NSFC)[21576045] ; Liaoning Revitalization Talents Program[XLYC1807269] ; National Key R&D Program of China[2018YFB1501703] ; Dalian Science and Technology Innovation Project[2018J12SN074] ; National Key Laboratory of Biochemical Engineering[2018KF-03] ; Fundamental Research Funds for the Central Universities[DUT19ZD213]
WOS研究方向Chemistry ; Science & Technology - Other Topics
语种英语
出版者ROYAL SOC CHEMISTRY
WOS记录号WOS:000628913600027
资助机构National Natural Science Foundation of China (NSFC) ; Liaoning Revitalization Talents Program ; National Key R&D Program of China ; Dalian Science and Technology Innovation Project ; National Key Laboratory of Biochemical Engineering ; Fundamental Research Funds for the Central Universities
内容类型期刊论文
源URL[http://ir.ipe.ac.cn/handle/122111/48031]  
专题中国科学院过程工程研究所
通讯作者Xue, Chuang
作者单位1.Dalian Univ Technol, Sch Bioengn, Engn Res Ctr Applicat & Transformat Synth Biol, Dalian 116024, Peoples R China
2.Dalian Univ Technol, Ningbo Inst, Ningbo 315016, Peoples R China
3.Ohio State Univ, Dept Chem & Biomol Engn, 151 West Woodruff Ave, Columbus, OH 43210 USA
4.Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 10090, Peoples R China
推荐引用方式
GB/T 7714
Du, Guangqing,Zhu, Chao,Xu, Mengmeng,et al. Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness[J]. GREEN CHEMISTRY,2021,23(5):2155-2168.
APA Du, Guangqing,Zhu, Chao,Xu, Mengmeng,Wang, Lan,Yang, Shang-Tian,&Xue, Chuang.(2021).Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness.GREEN CHEMISTRY,23(5),2155-2168.
MLA Du, Guangqing,et al."Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness".GREEN CHEMISTRY 23.5(2021):2155-2168.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace