CORC  > 过程工程研究所  > 中国科学院过程工程研究所
In situ immobilization of Fe/Fe3C/Fe2O3 hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction
Zhang, Binbin1; Li, Tongfei1; Huang, Longzhen1; Ren, Yiping1; Sun, Dongmei1; Pang, Huan2; Yang, Jun3,4; Xu, Lin1; Tang, Yawen1
刊名NANOSCALE
2021-03-14
卷号13期号:10页码:5400-5409
ISSN号2040-3364
DOI10.1039/d1nr00078k
英文摘要The rational design of affordable, efficient and robust electrocatalysts towards the oxygen reduction reaction (ORR) is of vital importance for the future advancement of various renewable-energy technologies. Herein, we develop a feasible and delicate synthesis of Fe/Fe3C/Fe2O3 hollow heterostructured nanoparticles in situ immobilized on highly graphitic nitrogen-doped carbon nanotubes (referred to as Fe/Fe3C/Fe2O3@N-CNTs hereafter) via a simple hydrogel-bridged pyrolysis strategy. The simultaneous consideration of interfacial manipulation and nanocarbon hybridization endows the formed Fe/Fe3C/Fe2O3@N-CNTs with sufficiently well-dispersed and firmly immobilized active components, regulated electronic configuration, enhanced electrical conductivity, multidimensional mass transport channels, and remarkable structural stability. Consequently, benefiting from the compositional synergy and architectural superiority, the as-obtained Fe/Fe3C/Fe2O3@N-CNTs exhibit excellent ORR catalytic activity, impressive durability and superior selectivity in an alkaline electrolyte, outperforming the commercial Pt/C catalyst and a majority of the previously reported Fe-based catalysts. Furthermore, the rechargeable Zn-air battery using Fe/Fe3C/Fe2O3@N-CNTs + RuO2 as an air-cathode exhibits a higher power density, larger specific capacity and better cycling stability as compared with the state-of-the-art Pt/C + RuO2 counterpart. The explored hydrogel-bridged pyrolysis strategy enabling the concurrent heterointerface construction, nanostructure engineering and nanocarbon hybridization may inspire the future design of high-efficiency electrocatalysts for diverse renewable energy applications.
资助项目National Natural Science Foundation of China[21972068] ; National Natural Science Foundation of China[21875112] ; National Natural Science Foundation of China[22075290] ; Qing Lan Project of Jiangsu Province ; Nanjing IPE Institute of Green Manufacturing Industry ; Beijing Natural Science Foundation[Z200012]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
语种英语
出版者ROYAL SOC CHEMISTRY
WOS记录号WOS:000630384400022
资助机构National Natural Science Foundation of China ; Qing Lan Project of Jiangsu Province ; Nanjing IPE Institute of Green Manufacturing Industry ; Beijing Natural Science Foundation
内容类型期刊论文
源URL[http://ir.ipe.ac.cn/handle/122111/47988]  
专题中国科学院过程工程研究所
通讯作者Xu, Lin; Tang, Yawen
作者单位1.Nanjing Normal Univ, Sch Chem & MateriaLc Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Peoples R China
2.Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225009, Peoples R China
3.Nanjing IPE Inst Green Mfg Ind, Nanjing 211100, Peoples R China
4.Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Binbin,Li, Tongfei,Huang, Longzhen,et al. In situ immobilization of Fe/Fe3C/Fe2O3 hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction[J]. NANOSCALE,2021,13(10):5400-5409.
APA Zhang, Binbin.,Li, Tongfei.,Huang, Longzhen.,Ren, Yiping.,Sun, Dongmei.,...&Tang, Yawen.(2021).In situ immobilization of Fe/Fe3C/Fe2O3 hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction.NANOSCALE,13(10),5400-5409.
MLA Zhang, Binbin,et al."In situ immobilization of Fe/Fe3C/Fe2O3 hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction".NANOSCALE 13.10(2021):5400-5409.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace