CORC  > 过程工程研究所  > 中国科学院过程工程研究所
Analysis of the energy-minimization multiscale model with multiobjective optimization
Mo, Yi1; Du, Mengjie2,3; Ge, Wei2,3; Zhang, Pingwen1
刊名PARTICUOLOGY
2020-02-01
卷号48页码:109-115
关键词Energy-minimization Multi-scale Model Multiobjective Optimization Flow Regime Transition
ISSN号1674-2001
DOI10.1016/j.partic.2018.09.004
英文摘要

Gas solid two-phase flow is ubiquitous in nature and many engineering fields, such as chemical engineering, energy, and mining. The closure of its hydrodynamic model is difficult owing to the complex multiscale structure of such flow. To address this problem, the energy-minimization multi-scale (EMMS) model introduces a stability condition that presents a compromise of the different dominant mechanisms involved in the systems, each expressed as an extremum tendency. However, in the physical system, each dominant mechanism should be expressed to a certain extent, and this has been formulated as a multiobjective optimization problem according to the EMMS principle generalized from the EMMS model. The mathematical properties and physical meanings of this multiobjective optimization problem have not yet been explored. This paper presents a numerical solution of this multiobjective optimization problem and discusses the correspondence between the solution characteristics and flow regimes in gas solid fluidization. This suggests that, while the most probable flow structures may correspond to the stable states predicted by the EMMS model, the noninferior solutions are in qualitative agreement with the observable flow structures under corresponding conditions. This demonstrates that both the dominant mechanisms and stability condition proposed for the EMMS model are physically reasonable and consistent, suggesting a general approach of describing complex systems with multiple dominant mechanisms. (C) 2019 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

资助项目National Natural Science Foundation of China[91434201] ; Key Research Program of Frontier Science, CAS[QYZDJSSW-JSCO29] ; Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of the Chinese Academy of Sciences[XDA 21030700]
WOS关键词Fluidization ; Choking
WOS研究方向Engineering ; Materials Science
语种英语
出版者ELSEVIER SCIENCE INC
WOS记录号WOS:000514246400012
资助机构National Natural Science Foundation of China ; Key Research Program of Frontier Science, CAS ; Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of the Chinese Academy of Sciences
内容类型期刊论文
源URL[http://ir.ipe.ac.cn/handle/122111/39657]  
专题中国科学院过程工程研究所
通讯作者Ge, Wei; Zhang, Pingwen
作者单位1.Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
2.Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst MPCS, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Mo, Yi,Du, Mengjie,Ge, Wei,et al. Analysis of the energy-minimization multiscale model with multiobjective optimization[J]. PARTICUOLOGY,2020,48:109-115.
APA Mo, Yi,Du, Mengjie,Ge, Wei,&Zhang, Pingwen.(2020).Analysis of the energy-minimization multiscale model with multiobjective optimization.PARTICUOLOGY,48,109-115.
MLA Mo, Yi,et al."Analysis of the energy-minimization multiscale model with multiobjective optimization".PARTICUOLOGY 48(2020):109-115.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace