One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes
Zhao Peng-Jun; Wu Rong; Hou Juan; Chang Ai-Min; Guan Fang; Zhang Bo
刊名ACTA PHYSICO-CHIMICA SINICA
2012
卷号28期号:8页码:1971-1977
关键词Visible-light Photocatalysis Tio2 Cu One Step Hydrothermal Method Composite Nanotube
ISSN号1000-6818
DOI10.3866/PKU.WHXB201206111
英文摘要

One dimensional titanate nanotubes modified with copper nanospheres were synthesized through a facile one-step hydrothermal process. Transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive spectrometry (EDS) were used to monitor the changes in the morphology and phases during the hydrothermal process. The diameter of the Cu-TiO2 composite nanotubes was 10-15 nm and their lengths were ca 100 nm, the dimension of the covered Cu nanoparticles was about 5 nm. Brunauer-Emmett-Teller (BET) tests revealed the specific surface area of the Cu-TiO2 composite nanotubes to be 154.67 m(2) . g(-1). The formation process and mechanism of the composite nanotubes were surveyed by adjusting the hydrothermal duration and titanium precursor. The results revealed that an amorphous titanium precursor is essential for the successful formation of this unique topography and phase composition. Anti-Ostwald ripening, a decrease in the dimensions of the copper nanospheres with hydrothermal time, was observed in the TEM images, which is of benefit to helps keep the particles on the nanoscale. The UV-Vis spectrum of the as-prepared material exhibits a strong absorption at 350-800 nm in the visible band compared with commercial TiO2 nanopowders. The plasmonic absorption of metallic copper particles between 550 and 600 nm is seen in the UV-Vis spectrum. Schottky barriers between copper-TiO2 interfaces make this kind of material a potential agent in speeding up electron transport rates and slowing recombination rates. Photocatalytic experiments demonstrated this unique Cu-TiO2 composite nanotube material has a high photocatalytic activity under visible-light irradiation.

学科主题Chemistry
WOS记录号WOS:000307486200025
公开日期2013-11-07
内容类型期刊论文
源URL[http://ir.xjipc.cas.cn/handle/365002/2799]  
专题新疆理化技术研究所_材料物理与化学研究室
通讯作者Chang Ai-Min
作者单位Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Xinjiang Key Lab Elect Informat Mat & Devices, Urumqi 830011, Peoples R China;Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhao Peng-Jun,Wu Rong,Hou Juan,et al. One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes[J]. ACTA PHYSICO-CHIMICA SINICA,2012,28(8):1971-1977.
APA Zhao Peng-Jun,Wu Rong,Hou Juan,Chang Ai-Min,Guan Fang,&Zhang Bo.(2012).One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes.ACTA PHYSICO-CHIMICA SINICA,28(8),1971-1977.
MLA Zhao Peng-Jun,et al."One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes".ACTA PHYSICO-CHIMICA SINICA 28.8(2012):1971-1977.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace