CORC  > 海洋研究所  > 中国科学院海洋研究所
Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai-Tibet Plateau: A zircon perspective
Zhong, Shihua2,6,7; Li, Sanzhong2,6,7; Feng, Chengyou3; Gao, Yongbao4; Qu, Hongying5; Seltmann, Reimar8; He, Shuyue1; Liu, Guoyan1; Wang, Xiaohong9; Dolgopolova, Alla6,7,8
刊名ORE GEOLOGY REVIEWS
2021-12-01
卷号139页码:19
关键词Fertility Zircon Skarn Qimantagh Qinghai-Tibet Plateau
ISSN号0169-1368
DOI10.1016/j.oregeorev.2021.104560
通讯作者Zhong, Shihua(zhongshihua@ouc.edu.cn) ; Li, Sanzhong(sanzhong@ouc.edu.cn)
英文摘要The Yemaquan polymetallic skarn deposit is located in the Qimantagh metallogenic belt (QMB), northern Qinghai-Tibet Plateau, China, with total ore resources of 82.7 million metric tons at 29.46 percent Fe, 0.40% Cu, 2.08% Pb and 1.77% Zn. In this study, new trace element composition of zircon in tandem with LA-ICP-MS U-Pb geochronology are provided for mineralized and barren intrusive rocks occurring within two magnetic anomaly areas (M1 and M13) at the Yemaquan deposit. These data, combined with whole rock major and trace element compositions, allow to constrain the geochronological framework and magmatic processes for different types of intrusive rocks within the district. The zircon U-Pb ages reveal that the polymetallic mineralization in the M1 and M13 anomaly areas results from two temporally distinct intrusive centers. Different to the M13 area where only the mineralized Devonian intrusions are recorded, both mineralized and barren intrusive rocks in the M1 area were emplaced in the Late Triassic. Whole rock major and trace elements indicate that both Triassic mineralized and barren rocks underwent significant fractional crystallization, with the Triassic barren rocks displaying much stronger plagioclase fractionation. In contrast, the limited whole rock silica range and high Eu/Eu* of Devonian mineralized intrusions indicate that they did not experience evident fractionation. Zircon trace elements show that the two mineralized groups at Yemaquan display similar, high zircon Ce/Ce* but distinguishable Eu/Eu* ratios, which suggest a consistent, high magmatic oxidation state but different water content. The magmatic water content of Devonian mineralized rocks higher than that of their Triassic counterparts probably suggests that the former are more Cu-fertile. This study confirms that both Devonian and Triassic intrusive activities are responsible for skarn Fe-Cu-Pb-Zn mineralization at the Yemaquan deposit. Meanwhile, in view of the general feature of Yemaquan in the context of skarn deposits from the QMB, we thus suggest that in future mineral exploration great attention should be paid to both the Triassic and Devonian intrusive rocks.
资助项目Natural Science Foundation of Shandong Province[ZR2020QD027] ; China Postdoctoral Science Foundation[2020T130621] ; China Postdoctoral Science Foundation[20180838] ; Opening Foundation of Key Lab of Sub-marine Geosciences and Prospecting Techniques. MOE, Ocean Univer-sity of China[SGPT-2021OF-03] ; Science and Technology Project of Qinghai Province[2019-ZJ-7009] ; Natural Environment Research Council[NE/P017452/1]
WOS研究方向Geology ; Mineralogy ; Mining & Mineral Processing
语种英语
出版者ELSEVIER
WOS记录号WOS:000729454300001
内容类型期刊论文
源URL[http://ir.qdio.ac.cn/handle/337002/177464]  
专题中国科学院海洋研究所
通讯作者Zhong, Shihua; Li, Sanzhong
作者单位1.Third Inst Qinghai Geol Mineral Prospecting, Xining 810012, Peoples R China
2.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Mineral Resources, Qingdao 266237, Peoples R China
3.Chinese Acad Geol Sci, Inst Explorat Tech, Langfang 065000, Peoples R China
4.China Geol Survey, Key Lab Study Focused Magnetism & Giant Ore Depos, Xian Ctr, Minist Nat Resources, Xian, Peoples R China
5.Chinese Acad Geol Sci, Inst Mineral Resour, MLR Key Lab Metallogeny & Mineral Assessment, Beijing 100037, Peoples R China
6.Ocean Univ China, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Key Lab Submarine Geosci & Prospecting Tech, MOE, Qingdao 266100, Peoples R China
7.Ocean Univ China, Coll Marine Geosci, Qingdao 266100, Peoples R China
8.Nat Hist Museum, Dept Earth Sci, Ctr Russian & Cent EurAsian Mineral Studies, London SW7 5BD, England
9.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China
推荐引用方式
GB/T 7714
Zhong, Shihua,Li, Sanzhong,Feng, Chengyou,et al. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai-Tibet Plateau: A zircon perspective[J]. ORE GEOLOGY REVIEWS,2021,139:19.
APA Zhong, Shihua.,Li, Sanzhong.,Feng, Chengyou.,Gao, Yongbao.,Qu, Hongying.,...&Dolgopolova, Alla.(2021).Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai-Tibet Plateau: A zircon perspective.ORE GEOLOGY REVIEWS,139,19.
MLA Zhong, Shihua,et al."Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai-Tibet Plateau: A zircon perspective".ORE GEOLOGY REVIEWS 139(2021):19.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace