Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato
Sun, Liangliang; Wang, Yibo1; Wang, Ruling2; Wang, Ruting; Zhang, Ping; Ju, Qiong; Xu, Jin
刊名ENVIRONMENTAL SCIENCE-NANO
2020
卷号7期号:11页码:3587_3604
ISSN号2051-8153
DOI10.1039/d0en00723d
英文摘要With the increasing use of zinc oxide nanoparticles (ZnO NPs) in industry, there is an increased release of these NPs into ecosystem, with potential impact on the ecological environment. Herein, we investigated the physiological and molecular mechanisms underlying ZnO NP-mediated plant growth in tomato plants. Foliar spraying with ZnO NPs (20 and 100 mg L-1) improved tomato growth by increasing the chlorophyll content and photosystem II activity. Comparative transcriptomic analysis revealed that ZnO NPs upregulated the expression of a set of genes involved in nutrient element transport, carbon/nitrogen metabolism, and the secondary metabolism in tomato, with the metabolome analysis further supporting this result. Foliar spraying with ZnO NPs increased iron (Fe) accumulation by 12.2% in tomato leaves; we thus examined the effects of ZnO NPs in tomato plants in response to Fe deficiency. Interestingly, foliar spraying with ZnO NPs markedly improved Fe deficiency tolerance in tomato. Physiological analysis indicated that ZnO NPs reduced Fe deficiency-induced oxidative damage and improved the metal nutrient element contents in tomato. Further, transcriptomic and metabolomic analyses indicated that foliar spraying with ZnO NPs increased the expression of genes encoding antioxidative enzymes, transporters, and the enzymes or regulators involved in carbon/nitrogen metabolism and secondary metabolism, thereby improving the levels of antioxidation, sugars, and amino acids in Fe-deficient tomato plants. Taken together, these results contribute to our understanding of the ecological effects of ZnO NPs.
学科主题Chemistry ; Environmental Sciences & Ecology ; Science & Technology - Other Topics
语种英语
WOS记录号WOS:000590786100022
内容类型期刊论文
源URL[http://ir.xtbg.org.cn/handle/353005/11914]  
专题西双版纳热带植物园_2012年后新成立研究组
作者单位1.Shanxi Agr Univ, Coll Hort, Taigu 030801, Peoples R China
2.Tianshui Normal Univ, Coll Bioengn & Biotechnol, GanSu Key Lab Utilizat Agr Solid Waste Resources, Tianshui 741000, Gansu, Peoples R China
3.Chinese Acad Sci, CAS Key Lab Trop Plant Resources & Sustainable Us, Xishuangbanna Trop Bot Garden, Mengla 666303, Yunnan, Peoples R China
推荐引用方式
GB/T 7714
Sun, Liangliang,Wang, Yibo,Wang, Ruling,et al. Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato[J]. ENVIRONMENTAL SCIENCE-NANO,2020,7(11):3587_3604.
APA Sun, Liangliang.,Wang, Yibo.,Wang, Ruling.,Wang, Ruting.,Zhang, Ping.,...&Xu, Jin.(2020).Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato.ENVIRONMENTAL SCIENCE-NANO,7(11),3587_3604.
MLA Sun, Liangliang,et al."Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato".ENVIRONMENTAL SCIENCE-NANO 7.11(2020):3587_3604.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace