Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe
Lou, Xunuo2; Li, Shuang2; Chen, Xiang1; Zhang, Qingtang2; Deng, Houquan2; Zhang, Jian3; Li, Di3; Zhang, Xuemei3,4; Zhang, Yongsheng3,4; Zeng, Haibo5
刊名ACS NANO
2021-05-25
卷号15
关键词lattice strain thermoelectric materials polycrystalline SnSe lattice thermal conductivity figure of merit
ISSN号1936-0851
DOI10.1021/acsnano.1c01469
通讯作者Li, Di(lidi@issp.ac.cn) ; Zhang, Yongsheng(yshzhang@theory.issp.ac.cn) ; Zeng, Haibo(zeng.haibo@njust.edu.cn) ; Tang, Guodong(tangguodong@njust.edu.cn)
英文摘要Polycrystalline SnSe materials with ZT values comparable to those of SnSe crystals are greatly desired due to facile processing, machinability, and scale-up application. Here manipulating interatomic force by harnessing lattice strains was proposed for achieving significantly reduced lattice thermal conductivity in polycrystalline SnSe. Large static lattice strain created by lattice dislocations and stacking faults causes an effective shortening in phonon relaxation time, resulting in ultralow lattice thermal conductivity. A combination of band convergence and resonance levels induced by Ga incorporation contribute to a sharp increase of Seebeck coefficient and power factor. These lead to a high thermoelectric performance ZT similar to 2.2, which is a record high ZT reported so far for solution-processed SnSe polycrystals. Besides the high peak ZT, a high average ZT of 0.72 and outstanding thermoelectric conversion efficiency of 12.4% were achieved by adopting nontoxic element doping, highlighting great potential for power generation application at intermediate temperatures. Engineering lattice strain to achieve ultralow lattice thermal conductivity with the aid of band convergence and resonance levels provides a great opportunity for designing prospective thermoelectrics.
资助项目National Natural Science Foundation of China[52071182] ; National Natural Science Foundation of China[11774347] ; Qinglan Project of the Young and Middle-aged Academic Leader of Jiangsu Province
WOS关键词ELECTRICAL-TRANSPORT PROPERTIES ; REALIZING HIGH FIGURE ; THERMAL-CONDUCTIVITY ; MERIT ; EFFICIENCY ; CONVERGENCE ; PBTE
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
语种英语
出版者AMER CHEMICAL SOC
WOS记录号WOS:000656994100025
资助机构National Natural Science Foundation of China ; Qinglan Project of the Young and Middle-aged Academic Leader of Jiangsu Province
内容类型期刊论文
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/123729]  
专题中国科学院合肥物质科学研究院
通讯作者Li, Di; Zhang, Yongsheng; Zeng, Haibo; Tang, Guodong
作者单位1.Nanjing Univ Sci & Technol, Nano & Heterogeneous Mat Ctr, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
2.Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, MIIT Key Lab Adv Metall & Intermetall Mat Technol, Nanjing 210094, Peoples R China
3.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
4.Univ Sci & Technol China, Sci Isl Branch Grad Sch, Hefei 230026, Peoples R China
5.Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Inst Optoelect & Nanomat, MIIT Key Lab Adv Display Mat & Devices, Nanjing 210094, Peoples R China
推荐引用方式
GB/T 7714
Lou, Xunuo,Li, Shuang,Chen, Xiang,et al. Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe[J]. ACS NANO,2021,15.
APA Lou, Xunuo.,Li, Shuang.,Chen, Xiang.,Zhang, Qingtang.,Deng, Houquan.,...&Tang, Guodong.(2021).Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe.ACS NANO,15.
MLA Lou, Xunuo,et al."Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe".ACS NANO 15(2021).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace