题名稀土掺杂纳米材料的制备及其光学性能研究
作者崔颖
学位类别硕士
答辩日期2012-05-21
授予单位中国科学院研究生院
导师王丹
关键词水热法 高温热分解法 单分散 稀土发光 纳米晶
其他题名The Preparation and Optical property of Rare Earth-doped Nanomaterials
学位专业材料学
中文摘要稀土离子掺杂材料是将稀土离子掺杂到无机固体材料基体中,这样将增强原有的发光性能,铕、铽、铥等是目前应用比较广泛而成熟的稀土掺杂荧光材料。目前稀土掺杂荧光材料已经广泛应用在彩电显像管、节能灯、农用转光膜、军用显示器等,具有很好的经济和社会价值。稀土纳米材料及应用已成为当前的一个热点,其原因在于该材科集稀土特性和纳米特性于一体,必然会开创出非稀土材料和非纳米材料所不具有的综合优良特性,其应用前景巨大。由于纳米材料以及量子点材料有着超乎寻常的特性,所以人们可以灵活的运用稀土和纳米的特性、巧妙地合成稀土纳米粉体材料、半导体纳米晶材料、有机-无机复合材料以及层出不穷的纳米改性材料等新材料和新应用,形成新的经济增长点。本文主要做了两方面工作:一方面是发展了一种水热法合成氧化钇纳米球的方法,然后在合成的氧化钇纳微球条件上,通过稀土离子的掺杂,成功地合成了红、绿、蓝三原色氧化钇基稀土掺杂纳米发光材料;另一方面是采用高温注入法成功地合成了铕掺杂氧化钇的量子点材料。并且通过此方法尝试合成了半导体CZTTe纳米晶新型光伏材料,由于这种新型材料具有优异的光学性能,所以有可能成为新一代绿色高效的光电和光伏设备材料。本论文的主要内容如下: (1) 用表面活性剂辅助的均相水热法一步合成了单分散立方结构的Y2O3纳米球,所得产物形貌均一,粒度分布较窄,并且经过高温煅烧后颗粒仍能保持单分散的特性。 (2) 在上述制备氧化钇纳微球的条件下,通过稀土离子Eu3+、Tb3+、Tm3+的掺杂成功合成了红、绿、蓝三原色荧光材料,并对考察了煅烧温度对材料发光强度的影响,以及探索了稀土离子在氧化钇基质中的最佳掺杂量等问题。本实验通过水热法所制备的三基色荧光粉与固相法所得的荧光粉相比,降低了材料的煅烧温度,实验结果表明800ºC煅烧后样品发光强度最强,超过此温度后将出现温度淬灭现象。 (3) 采用高温溶剂热的方法合成了Y2O3:Eu3+量子点材料,通过荧光光谱测试,发现其荧光强度并没有明显增强,可能原因是由于量子点材料其表面缺陷较多,当受到激发光照射时,大部分能量被缺陷吸收,形成了缺陷发射。 (4)采用高温注入的方法成功地合成了CZTTe纳米晶,该纳米晶平均尺寸为7.1nm,具有较小的尺寸分布,标准偏差为1.6nm。此种材料是一种新型的半导体材料,其带隙约为0.8eV,在紫外-可见-近红外区域具有较强的吸收能力。CZTTe纳米晶可以充分地溶于非极性溶剂中,从而使得他们能够被很轻易地旋涂或喷涂于基板上,因而大大地降低了制造成本。所构建的CZTTe纳米晶薄膜设备展现出了良好的光响应性质,从而使得CZTTe纳米晶有可能成为新一代绿色高效的光电和光伏设备材料。
英文摘要A novel material fabricated by doping rare earth ions into the matrix of inorganic matter is defined as the rare earth-doped material, accompanying with the luminescent improvement. Europium, terbium and thulium are the typical luminescence centers. The products based on this method have brought great economic and social value, such as color TV screen, energy saving lamps, agricultural optical transfer film, military display and so on, Due to the potential properties of rare earth and nanomaterials, the applications of rare earth-doped nanomaterials have become a hot topic in current, and also will open a new field of non-rare earth and non-nanosize materials for the society. On the other hand, because of the amazing properties of the nanomaterials and quantum dots, scientists have synthesized many kinds of special materials, such as nanopowder, semiconductor nanocrystals, organic-inorganic hybrid materials and other advanced products. This paper contains two aspects: for one thing, we first synthesize yttrium oxide nanospheres by hydrothermal method and dop rare earth ions into the nanospheres substrate afterwards. The red, green, and blue phosphors are obtained in the end; for another, we successfully synthesize Y2O3:Eu3+ nanocrystals by high temperature thermal decomposition method, and also attempt to synthesis a new kind of semiconductor CZTTe nanocrystals photovoltaic materials by this method, which maybe become a new generation of green and efficient optoelectronic and photovoltaic equipment materials because of the excellent optical properties. The main content of this paper is shown as follows: (1) By the surfactant-assisted homogeneous method, we created a facile hydrothermal synthetic route to prepare super monodispersed Y2O3 nanospheres with uniform morphology and a narrow size distribution. What’s more, the particles can still remain monodisperse after high temperature calcination process. (2) By doping rare earth ion such as Eu3+, Tb3+and Tm3+ into the cubic phase Y2O3 nanospheres mentioned above, we successfully synthesized red, green, and blue three primary color fluorescent powders. The luminescence principle of Y2O3:Tb3+ was studied with a series of doping degree, calcination temperature and other factors. Moreover, we find that the lower symmetry of the matrix structure will lead to improvement of the fluorescence intensity, and the optimal calcination temperature is 800 oC, which is lower than the phosphor obtained by solid-phase method. The quenching would take palce if the product was overheating. (3) By high temperature decomposition method, Y2O3: Eu3+quantum dots, and fluorescence spectroscopy was fabricated and characterized, but no higher fluorescence intensity was observed as expected. The reasons may be attributed to the defects existed on the surface of quantum dots , which may absorb most of the light and form defect quenching brought by light exciting. (4) By using high temperature injection method, we successfully synthesized CZTTe quantum dots with an average diameter of 7.1 nm and a smaller size distribution. This material is a new type of semiconductor with a band gap of 0.8 eV, which can bring a strong absorption in the UV-visible- near infrared region. The CZTTe quantum dots can be fully dissolved in non-polar solvents, therefore, they can be very easily spin-coated or sprayed on the substrate, and bring a great reduce of the manufacturing costs. More importantly, the very excellent photoresponse can be observerd by the CZTTe nanocrystals thin film and may bring a bright future.
语种中文
公开日期2013-09-25
内容类型学位论文
源URL[http://ir.ipe.ac.cn/handle/122111/1853]  
专题过程工程研究所_研究所(批量导入)
推荐引用方式
GB/T 7714
崔颖. 稀土掺杂纳米材料的制备及其光学性能研究[D]. 中国科学院研究生院. 2012.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace