题名超细及粘性颗粒在锥形床及循环流化床中的流态化
作者童华
学位类别博士
答辩日期2004
授予单位中国科学院过程工程研究所
授予地点中国科学院过程工程研究所
导师李洪钟
关键词粘附性颗粒 超细颗粒 锥形床 快速流态化 循环流化床 提升管 锥形料腿 V型阀 浮游内构件 L型阀 动力学模型
其他题名Fluidization of Ultrafine and Cohesive Particles in Concial Bed and Circulating Fluidized Bed
学位专业化学工艺
中文摘要粘附性颗粒在流化过程中形成流化聚团、并最终以聚团形式流化。多数粘附性颗粒的流化聚团具有较宽粒径分布。在锥形流化床中,对碳酸钙等四种不同粘附性的物料进行了流态化实验,结果表明,由于锥形流化床能够提供变化的表观气速,底部高速气流区域可阻止大聚团沉积,顶部低速气流区域可防止小聚团被气流带走。因而,锥形床可以满足不同粒径的聚团流化的需求,实现粘附性颗粒的正常流态化。在锥形流化床中,节涌现象不再出现。通常粘附性颗粒在锥形床中的流化过程为床层撕裂、沟流、部分流化部分失流或者完全失流、以及完全流化等几个阶段。不同的物料会略有差别,比如粘附性较低的滑石粉的流化过程,就不存在部分或者完全失流的状态,已形成流化聚团的物料,直接就呈现完全流化的现象。因为存在部分流化现象,锥形床在流化过程中的床层压降由两部分组成,即固定床压降和流化床压降。随着气体流率的改变,两部分的比率逐渐发生改变。当物料完全被流化之后,床层压降等于单位面积上的颗粒重量。由于快速流化床中具有较高气速,其中粘附性颗粒的聚团的尺寸要比普通鼓泡流化床中的聚团尺寸小得多。实验表明,粘附性颗粒的快速流态化,体现出典型的快速床动力学特性。沿床高,颗粒浓度呈现“S”型分布,在提升管顶部有浓度增加的出口效应。径向颗粒浓度分布则呈现典型的“环一核”结构。普通的直管料腿和V型阀,难以正常地将物料稳定、连续地回送到提升管,因而在本工作中采用了锥形料腿与有辅助气体的V型阀的物料回送结构。实验表明,锥形料腿能够在比较低的料腿气体流率下(丛提升管气体流率的10%),保持粘附性物料处于流化状态,从而使之具有良好的流动性。V型阀中加入辅助气流,可以明显降低粘附性物料通过时的阻力,从而使得物料的回送过程变得连续平稳。实验还证明,尽管提升管处于快速床的高气流状态下,但是粘附性颗粒还是以聚团形式流化。提升管浓相段以上,聚团的粒径沿床高变化不大;但在浓相段中,聚团粒径沿床高变化显著,位于床层底部的聚团最大。同样,不同的物料,在快速流化床中的聚团情况不尽相同。高粘附性颗粒,如钦白粉,可以形成大直径的聚团。这样就造成提升管中出现两种流化状态:底部大聚团的鼓泡或者湍动流态化,以及上部细小聚团的快速流态化。低粘附性、不形成大聚团的细颗粒,如滑石粉,则整个提升管为快速流化状态。提升管中还可以观察到聚团的动力学团聚体(Cluster),时聚时散地漂浮于提升管中。鉴于高粘附性颗粒在提升管中仍然有形成大聚团的清况,本工作在提升管中加入了可悬浮的粗颗粒,称“浮游内构件”,以强化破碎聚团的推动力。这种粗颗粒悬浮于提升管中的气体一细颗粒流中,但是并不被带出提升管进入循环过程。实验中,根据四种不同的物料,挑选了与之相匹配的浮游内构件。结果表明,浮游内构件可以明显抑制高粘附性颗粒在提升管中形成大直径的聚团。但是这种内构件,对业已形成的大聚团的破碎能力却有限。浮游内构件与被流化粉体物料特性共同决定了提升管的操作气速范围。对于浮游内构件来说,提升管操作范围的下限,应当保证内构件具有一定的动能,正常发挥破碎聚团的功能。提升管操作气速的上限,则不应当将内构件带出提升管。对被流化物料来说,提升管的气速操作下限,应当保证有一定的物料循环率;提升管的操作气速上限,则不应当出现稀相输送状态。基于上述原理,结合流态化理论中的最小流化速度、颗粒终端速度、悬浮颗粒受力平衡等理论,建立了计算提升管操作气速范围的方法。与实验进行比较,计算结果处于合理的范围内。这种方法也适用于在被流化物料和提升管操作气速范围都已确定的情况下,选择适当的浮游内构件。加入浮游内构件后的粘附性颗粒快速床,底部浓相段高度通常会有所增加。并且在气体一细颗粒流中的内构件浮游高度,要远高于在只有气体流时的高度。本文在设定一些简化条件的情况下,建立了浮游内构件破碎聚团的模型。经实验证实,该模型的计算结果具有一定的合理性。因为料腿在循环流化床中有着非常重要的作用,本工作初期还对L型料腿的动力学行为进行了研究。在散料力学原理和多相流理论的基础上,建立了L型阀动力学模型。该模型可以预测L型阀垂直管和水平管中固体颗粒流、气体压降和气体流率。模型绝大部分有比较严格的理论推导,但是模型中关于水平管壁摩擦压降的计算,目前还只能采用经验关联式。该模型的预测结果与实验数据吻合良好。
英文摘要Cohesive powders aggregate into fluidized agglomerates during fluidization, which results in factually agglomerates of cohesive powders. Usually, fluidized agglomerates are in wide size distribution. Conical bed can provide variational gas velocity along the bed height. Therefore, there are two gas speed zones in conical bed: high gas speed zone at bottom and low gas speed zone at the upper part of the bed. Higher gas velocity at bed bottom prevents from deposition of large agglomerates, while low gas velocity at upper part avoids elutriation of small agglomerates. Fluidization experi-ments on four kinds of cohesive powders including ultrafine CaCO3, TiO2, S1O2, and Mg3[Si40io](OH)2 powders were conducted in two conical beds with apex angles of 2.5° and 5°. Experimental results showed that four kinds of cohesive powders reached sta-ble fluidization in conical bed. The slugging, which usually presents in the fluidization process of cohesive powders in cylindrical bed, doesn't appear in the fluidization pro-cess of cohesive powders in conical bed. The fluidization process of cohesive powders in conical bed includes slitting, channeling, complete defluidization of agglomerates or partial fluidization, and complete fluidization. But not all the cohesive powder flu-idization processes include all these stages. For example, in the fluidization process of Mg3[Si40io](OH)2 powder, partial fluidization does not present. The pressure drop of conical fluidized bed comprises two components: the fixed bed pressure drop and the fluidized bed pressure drop. The ratio of the two components is various with fluidizing gas flow rate. When full fluidization is achieved, the bed pressure drop equals to the particle weight on unit area. Because of high superficial gas velocity in riser, fast fluidizaiton is suitable for fiuidizing most cohesive powders. However, fast fluidization of cohesive powders in conventional circulating fluidized bed is unstable or even discontinuous because the dipleg can not return the cohesive powders into the riser stably and continuously. In this work a novel design of returning system, conical dipleg combined with V-valve with aeration gas, is employed in circulating fluidized bed. Experiments show that conical dipleg can maintain cohesive particles fluidized at lower dipleg gas flow rate (usually less than 10% of riser gas flow rate). Only fluidized cohesive powders can flow in dipleg, pass through the V-valve, and return to the riser. The aeration gas of V-valve is helpful to avoid the blockage in V-valve, and make the returning particles flow smoothly. Fluidized agglomerates of cohesive powder in fast fluidized bed were experimen-tally observed. In the dilute section of riser, the size of agglomerates is relatively small, and varies slightly along the axial direction. However in the lower dense section of the riser the agglomerate size is progressively increased to the largest at the bottom. Dif-ferent fiuidizing characteristics of the cohesive powders in the riser are depended on the coherence of the particles. Highly cohesive powders, such as ultrafme T1O2 pow-ders, form large agglomerates and result in the coexistence of two fluidization states in the riser: the bubbling fluidization of large agglomerates at the bottom section, and the fast fluidization of small agglomerates at middle and upper sections.
语种中文
公开日期2013-09-16
页码145
内容类型学位论文
源URL[http://ir.ipe.ac.cn/handle/122111/1410]  
专题过程工程研究所_研究所(批量导入)
推荐引用方式
GB/T 7714
童华. 超细及粘性颗粒在锥形床及循环流化床中的流态化[D]. 中国科学院过程工程研究所. 中国科学院过程工程研究所. 2004.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace