CORC  > 金属研究所  > 中国科学院金属研究所
Examining Cu content contribution to changes in oxide layer formed on selective-laser-melted CoCrW alloys
Lu, Yanjin1,2; Lin, Wenlie1; Xie, Meiming4; Xu, Wentao1; Liu, Yujing5; Lin, Junjie1; Yu, Chun1; Tang, Kanglai4; Liu, Wenyuan6; Yang, Ke3
刊名APPLIED SURFACE SCIENCE
2019-01-15
卷号464页码:262-272
关键词Selective laser melting Antibacterial materials High-temperature oxidation CoCr alloys
ISSN号0169-4332
DOI10.1016/j.apsusc.2018.09.082
通讯作者Liu, Yujing(yujing.liu@uwa.edu.au) ; Lin, Jinxin(Franklin@fjirsm.ac.cn)
英文摘要In this study, CoCrW alloys with different Cu contents (0, 2, 3, and 6 wt%) were prepared by selective laser melting for dental applications. The bonding strength between porcelain and the metal in porcelain-fused-to-metal dental restorations could be considerably affected by the quality of Cr oxide formed on CoCr-based alloys. Recent studies revealed that the Cu element could affect the oxidation behavior of austenitic steels. Therefore, it is essential to investigate the effect of the Cu element introduction on the oxidation performance of CoCrW alloys. The SEM and SPM indicated that the Cu element considerably affected the microstructures and the roughness of the oxide layer. XRD analysis showed that the oxide layer in CoCrW alloys was mainly composed of Cr2O3 and CoCr2O4, while trace amounts of CuO and Cu2O were found after the addition of the Cu element. The depth profiles obtained by XPS suggested that the Cu content in the film structure could affect the thickness of the Cr oxide regions, which revealed that the addition of the Cu element accelerated the oxidation of CoCrW alloys by promoting the diffusion of the O element into the inner layer. The three-point bending test indicated that the addition of Cu had a negative effect on the bonding strength between porcelain and the metal substrate.
资助项目National Natural Science Foundation of China[51801198] ; National Key RD Plan[2016YFC1100502]
WOS研究方向Chemistry ; Materials Science ; Physics
语种英语
出版者ELSEVIER SCIENCE BV
WOS记录号WOS:000447744200031
资助机构National Natural Science Foundation of China ; National Key RD Plan
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/129862]  
专题金属研究所_中国科学院金属研究所
通讯作者Liu, Yujing; Lin, Jinxin
作者单位1.Chinese Acad Sci, Fujian Inst Res Struct Matter, 155 Yangqiao Rd West, Fuzhou, Fujian, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Met Res, 72 Wenhua Rd, Shenyang, Liaoning, Peoples R China
4.Third Mil Med Univ, Southwest Hosp, Dept Orthoped Surg, Sports Med Ctr, Gaotanyan Str 30, Chongqing 400038, Peoples R China
5.Univ Western Australia, Sch Mech & Chem Engn, 35 Stirling Highway, Perth, WA 6009, Australia
6.Fuzhou Univ, Coll Zijin Ming, Fuzhou 350108, Fujian, Peoples R China
推荐引用方式
GB/T 7714
Lu, Yanjin,Lin, Wenlie,Xie, Meiming,et al. Examining Cu content contribution to changes in oxide layer formed on selective-laser-melted CoCrW alloys[J]. APPLIED SURFACE SCIENCE,2019,464:262-272.
APA Lu, Yanjin.,Lin, Wenlie.,Xie, Meiming.,Xu, Wentao.,Liu, Yujing.,...&Lin, Jinxin.(2019).Examining Cu content contribution to changes in oxide layer formed on selective-laser-melted CoCrW alloys.APPLIED SURFACE SCIENCE,464,262-272.
MLA Lu, Yanjin,et al."Examining Cu content contribution to changes in oxide layer formed on selective-laser-melted CoCrW alloys".APPLIED SURFACE SCIENCE 464(2019):262-272.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace