Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation-emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis
Tang, Jiao; Li, Jun; Su, Tao; Han, Yong; Mo, Yangzhi; Jiang, Hongxing; Cui, Min; Jiang, Bin; Chen, Yingjun; Tang, Jianhui
刊名ATMOSPHERIC CHEMISTRY AND PHYSICS
2020-03-02
卷号20期号:4页码:2513-2532
关键词HUMIC-LIKE SUBSTANCES LIGHT-ABSORPTION PROPERTIES CONTAINING ORGANIC-COMPOUNDS PARTICULATE MATTER FLUORESCENCE SPECTROSCOPY ATMOSPHERIC AEROSOLS WATER URBAN NITROGEN HULIS
DOI10.5194/acp-20-2513-2020
产权排序[Tang, Jiao ; Li, Jun ; Su, Tao ; Mo, Yangzhi ; Jiang, Hongxing ; Jiang, Bin ; Song, Jianzhong ; Peng, Ping'an ; Zhang, Gan] Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Peoples R China ; [Tang, Jiao ; Li, Jun ; Su, Tao ; Mo, Yangzhi ; Jiang, Hongxing ; Jiang, Bin ; Song, Jianzhong ; Peng, Ping'an ; Zhang, Gan] Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab Environm Protect & Resources Ut, Guangzhou 510640, Peoples R China ; [Han, Yong ; Cui, Min ; Chen, Yingjun] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200092, Peoples R China ; [Tang, Jianhui] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China ; [Tang, Jiao ; Su, Tao ; Jiang, Hongxing] Univ Chinese Acad Sci, Beijing 100049, Peoples R China ; [Cui, Min] Yangzhou Univ, Sch Environm Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
文献子类Article
英文摘要Brown carbon (BrC) plays an essential impact on radiative forcing due to its ability to absorb sunlight. In this study, the optical properties and molecular characteristics of water-soluble and methanol-soluble organic carbon (OC; MSOC) emitted from the simulated combustion of biomass and coal fuels and vehicle emissions were investigated using ultraviolet-visible (UV-vis) spectroscopy, excitation-emission matrix (EEM) spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with electrospray ionization (ESI). The results showed that these smoke aerosol samples from biomass burning (BB) and coal combustion (CC) had a higher mass absorption efficiency at 365 nm (MAE(365)) than vehicle emission samples. A stronger MAE(365) value was also found in MSOC than water-soluble organic carbon (WSOC), indicating low polar compounds would possess a higher light absorption capacity. Parallel factor (PARAFAC) analysis identified six types of fluorophores (P1-6) in WSOC including two humic-like substances (HULIS-1) (P1 and P6), three protein-like substances (PLOM) (P2, P3, and P5), and one undefined substance (P4). HULIS-1 was mainly from aging vehicle exhaust particles; P2 was only abundant in BB aerosols; P3 was ubiquitous in all tested aerosols; P4 was abundant in fossil burning aerosols; and P5 was more intense in fresh vehicle exhaust particles. The MSOC chromophores (six components; C1-6) exhibited consistent characteristics with WSOC, suggesting the method could be used to indicate the origins of chromophores. FT-ICR mass spectra showed that CHO and CHON were the most abundant components of WSOC, but S-containing compounds appeared in a higher abundance in CC aerosols and vehicle emissions than BB aerosols, while considerably fewer S-containing compounds largely with CHO and CHON were detected in MSOC. The unique formulas of different sources in the van Krevelen (VK) diagram presented different molecular distributions. To be specific, BB aerosols with largely CHO and CHON had a medium H/C and low O/C ratio, while CC aerosols and vehicle emissions largely with S-containing compounds had an opposite H/C and O/C ratio. Moreover, the light absorption capacity of WSOC and MSOC was positively associated with the unsaturation degree and molecular weight in the source aerosols. The above results are potentially applicable to further studies on the EEM-based or molecular-characteristic-based source apportionment of chromophores in atmospheric aerosols.
WOS关键词HUMIC-LIKE SUBSTANCES ; LIGHT-ABSORPTION PROPERTIES ; CONTAINING ORGANIC-COMPOUNDS ; PARTICULATE MATTER ; FLUORESCENCE SPECTROSCOPY ; ATMOSPHERIC AEROSOLS ; WATER ; URBAN ; NITROGEN ; HULIS
语种英语
WOS记录号WOS:000518768800003
资助机构National Natural Science Foundation of ChinaNational Natural Science Foundation of China [41430645, 41773120] ; National Key R&D Program of China [2017YFC0212000] ; International Partnership Program of Chinese Academy of Sciences [132744KYSB20170002] ; Guangdong Foundation for Program of Science and Technology Research [2017B030314057]
内容类型期刊论文
源URL[http://ir.yic.ac.cn/handle/133337/25072]  
专题烟台海岸带研究所_近岸生态与环境实验室
烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室
作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China;
2.Yangzhou Univ, Sch Environm Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
3.Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Peoples R China;
4.Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab Environm Protect & Resources Ut, Guangzhou 510640, Peoples R China;
5.Fudan Univ, Dept Environm Sci & Engn, Shanghai 200092, Peoples R China;
6.Univ Chinese Acad Sci, Beijing 100049, Peoples R China;
推荐引用方式
GB/T 7714
Tang, Jiao,Li, Jun,Su, Tao,et al. Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation-emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2020,20(4):2513-2532.
APA Tang, Jiao.,Li, Jun.,Su, Tao.,Han, Yong.,Mo, Yangzhi.,...&Zhang, Gan.(2020).Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation-emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis.ATMOSPHERIC CHEMISTRY AND PHYSICS,20(4),2513-2532.
MLA Tang, Jiao,et al."Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation-emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis".ATMOSPHERIC CHEMISTRY AND PHYSICS 20.4(2020):2513-2532.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace