Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction
Li, YH; Chen, BX; Duan, XZ; Chen, SM; Liu, DB; Zang, KT; Si, R; Lou, FL; Wang, XH; Ronning, M
刊名APPLIED CATALYSIS B-ENVIRONMENTAL
2019
卷号249期号:-页码:306—315
关键词METAL-FREE ELECTROCATALYSTS NITROGEN-DOPED CARBON POROUS CARBON HYDROGEN EVOLUTION GRAPHITIC LAYERS ACTIVE-SITES EFFICIENT CATALYSTS GRAPHENE NANOPARTICLES
ISSN号0926-3373
DOI10.1016/j.apcatb.2019.03.016
文献子类期刊论文
英文摘要Development of cost-effective electrocatalysts as an alternative to platinum for oxygen reduction reaction (ORR) is of great significance for boosting the applications of green energy devices such as fuel cells and metal-air batteries. Here we report a nitrogen and phosphorus tri-doped hierarchically porous carbon supported highly cost-effective, efficient and durable Fe single-site electrocatalyst derived from biomass. Combined aberration-corrected HAADF-STEM, XPS and XAFS measurements and theoretical calculations reveal the atomically dispersed Fe-N-P-C-O complex as the dominant active sites for ORR. This work also shows the design principle for enhancing the ORR activity of single Fe site catalysts with higher Fe charge, which can be manipulated by the coordinated structure in the active centre. Theoretical calculations reveal that the main effective sites are singleN-P-O-Fe-O centers, where the associated P-O-Fe bond can significantly lower the stability of strongly adsorbed O-star and OH star on the catalytically active sites and thus give rise to enhanced ORR performance. The insights reported here open a new avenue for constructing highly efficient molecule-like heterogeneous catalysts in electrochemical energy technologies.
语种英语
内容类型期刊论文
源URL[http://ir.sinap.ac.cn/handle/331007/31482]  
专题上海应用物理研究所_中科院上海应用物理研究所2011-2017年
作者单位1.East China Univ Sci & Technol, State Key Lab Chem Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China;
2.Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
3.Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China;
4.Tianjin Univ Technol, Ctr Electron Microscopy, Tianjin 300384, Peoples R China;
5.Tianjin Univ Technol, Tianjin Key Lab Adv Funct Porous Mat, Inst New Energy Mat, Sch Mat, Tianjin 300384, Peoples R China;
6.Norwegian Univ Sci & Technol, Dept Chem Engn, N-7491 Trondheim, Norway;
推荐引用方式
GB/T 7714
Li, YH,Chen, BX,Duan, XZ,et al. Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction[J]. APPLIED CATALYSIS B-ENVIRONMENTAL,2019,249(-):306—315.
APA Li, YH.,Chen, BX.,Duan, XZ.,Chen, SM.,Liu, DB.,...&Chen, D.(2019).Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction.APPLIED CATALYSIS B-ENVIRONMENTAL,249(-),306—315.
MLA Li, YH,et al."Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction".APPLIED CATALYSIS B-ENVIRONMENTAL 249.-(2019):306—315.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace