题名基于X射线相位衬度成像的TRISO燃料颗粒无损分析
作者郭曼珊
答辩日期2019-05-01
文献子类硕士
授予单位中国科学院大学(中国科学院上海应用物理研究所)
授予地点中国科学院大学(中国科学院上海应用物理研究所)
导师林俊
关键词TRISO颗粒 X射线相衬成像 包覆层厚度计算 结构破损识别 图像处理 机器学习
英文摘要熔盐堆是第四代先进核能系统的候选堆型之一。除了传统的液态燃料熔盐堆之外,美国、中国的研发人员还提出了固态燃料熔盐堆的设计。固态燃料熔盐堆采用基于TRISO(Tristructural isotropic)颗粒的燃料元件,近年来正逐渐受到各国的关注。其燃料元件可以采用不同的设计,如球形、燃料棒及板型等。TRISO颗粒由燃料核芯(铀和钍的氧化物、碳化物等)和四个不同材质的包覆层组成。四个包覆层由内而外分别是缓冲层,内致密热解碳层,碳化硅层和外致密热解碳层。包覆层的结构完整程度是有效约束放射性裂变产物释放、确保燃料安全的重要因素。合适的包覆层厚度以及完整的内部结构可以有效地降低燃料的失效概率,从而保证反应堆的安全高效运行。因此,包覆层的厚度是TRISO包覆颗粒燃料制备过程中重要的质量控制参数。金相法是最常用的测量包覆层厚度的方法。但这种方法受到金相制样的限制,只能获得某一剖面的厚度信息。与金相法相比,X射线成像法可以对包覆颗粒进行无损检测,且可以通过变换观测角度得到更加全面的包覆层厚度信息。另一方面,对于有制造缺陷或运行过程中产生破损的TRISO颗粒,目前缺乏有效的检测手段。本工作采用X射线相位衬度成像利用X射线穿过不同材料边界时急剧的相位变化,对TRISO颗粒内部的各类边缘诸如包覆层边界,破损边缘做清晰的成像。在此基础上的开展的两项研究内容分别为:(1)提出TRISO包覆燃料颗粒包覆层厚度的自适应算法,并完成了厚度计算程序;(2)利用监督字典学习算法,建立了 TRISO燃料颗粒缺陷及破损的分析算法和程序。现有的对TRISO厚度进行无损计算的方法可以归纳为三个步骤,分别是图像去噪,边缘提取和厚度计算。然而现有的方法中对去噪算法优劣的关注不够,边缘提取的自动化程度较低,消耗的人力大,计算速度较慢。因而本研究针对现有的方法存在的一些弊端做了以下改进:1.使用全局差分降噪算法(total variation denoising algorithm)去噪,该算法具有较高的边缘敏感程度,可以在滤除背景噪声的同时较完整地保留边缘信息;使用衬度噪声比CNR(contrast to noise ratio)做去噪图像做量化,从而优化该算法中的参数,最大可能地防止边缘信息流失;2.使用自适应Canny算子做自动边缘提取,使传统Canny算子中的两个重要参数,滤波器宽度和非边界比例系数达到自适应化,从而可以自动计算出边缘探测的阈值,减少人力投入,提高边缘探测的准确程度;3.使用最小二乘法做圆心定位等,最终计算厚度的平均值和方差,使用单因素方差分析对无损方法和金相显微镜法计算得出的平均厚度做统计分析,探究两种方法在测量结果上是否存在显著差异;利用计算的方差信息分析包覆颗粒的厚度均匀性;最终证明,该方法经证明可以产生与金相显微镜法相当的结果,厚度方差较大的颗粒其包覆均匀程度较差;目前分析包覆颗粒的破损情况主要是基于有限元模型的模拟方法,尚未找到利用机器学习方法进行破损识别的例子。本研究将机器学习方法用于颗粒的破损检测中。主要工作如下:1.使用大津法将图像上的颗粒单个分割开来,大津法根据图像灰度直方图计算出基于某个阈值划分的类间方差,并通过最大化类间方差求得最终的优化阈值。使用该阈值将图像中的像素点分成两类,从而可以将图像转换成二值图像。在此基础上,利用二值化图像中像素点的连通情况确定各颗粒的位置信息,最终将各颗粒提取分离开来;2.使用 HOG(histogram of oriented gradient algorithm)和 LBP-HF(local binary pattern histogram Fourier)两个描述子对颗粒做特征提取。其中前者对光照和图像衬度的变化具有较强的鲁棒性,能将图像中的方向梯度直方图作为图像的特征进行描述,有效捕获图像边缘;后者则具有图像旋转不变性,它是局部二值化图案特征描述子的修正版,将均匀(uniform)局部二值化图案直方图的傅立叶变化作为最终的特征向量,更好地描述图像中的各像素点与周围像素点的差异,即纹理信息;使用典型关联法将HOG特征和LBP-HF特征做特征融合,使混合特征同时具备两种特征描述子的优点,从而可以更好地将破损颗粒和完好颗粒区分开来;3.结合监督字典学习(labelconsistentK-SVD,LCK-SVD)将捕获的图像特征作训练,生成一本字典用于其他颗粒特征的稀疏表达;由于LCK-SVD对字典学习的目标函数做了修正,利用训练集的标签信息加强特征的稀疏表达,并引入了分类器的参数进行优化,因而可以实现稀疏编码与自动识别。识别率达到83.1%;4.本次实验目的为实现各类颗粒的识别,引入四种破损类型,包括核芯迁移,OPyC层缺失,缓冲层不均匀以及包覆层破碎等。识别的结果不仅可以区分完好颗粒与破损颗粒,也可以区分各种破损类型。自动识别颗粒内部破损结构有助于分析燃料的失效概率,该识别方法也可以用于其他的破损分类。
语种中文
页码94
内容类型学位论文
源URL[http://ir.sinap.ac.cn/handle/331007/31199]  
专题上海应用物理研究所_中科院上海应用物理研究所2011-2017年
推荐引用方式
GB/T 7714
郭曼珊. 基于X射线相位衬度成像的TRISO燃料颗粒无损分析[D]. 中国科学院大学(中国科学院上海应用物理研究所). 中国科学院大学(中国科学院上海应用物理研究所). 2019.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace