题名蓝细菌脂肪酸激活酶的酶学性质与生理功能研究
作者高倩倩
学位类别博士
答辩日期2012-05
授予单位中国科学院研究生院
授予地点北京
导师吕雪峰 研究员
关键词集胞藻PCC6803 脂肪酸 脂肪酸激活酶 脂肪酶 脂肪酸族生物液体燃料
学位专业生物化学与分子生物学
中文摘要

随着快速增长的能量需求与日益显著的由于温室气体排放导致的全球气候变暖,生物燃料的研发变得更为迫切与重要,逐步成为一个关系到我国经济可持续发展、生态环境保护与国家能源安全的重要因素。从燃料性能角度考虑,可再生石油是石油的最佳替代品关键是如何通过非化石能源获得石油燃料。发展新型优质生物液体燃料,已经成为生物能源领域的主要发展趋势之一。脂肪酸族液体生物燃料在能量密度和与现有运输系统的兼容性方面都有很大的优势。研究脂肪酸族液体生物燃料的生物合成途径及其代谢调控机制、构建高效定向生物合成脂肪酸族液体生物燃料的基因工程微生物菌株,对于发展新型优质生物液体燃料产品、解决传统生物液体燃料产品品质不佳的瓶颈问题具有重要意义。

蓝细菌PCC6803作为一种光能自养型的微生物,因其生长速度快,遗传信息相对清晰,遗传操作简单越来越受到生物燃料研究者的关注。脂肪酸族生物燃料分子的合成离不开脂肪酸代谢途径。目前关于蓝细菌脂肪酸代谢途径的研究还处于起始阶段。研究发现蓝细菌PCC6803细胞内存在自由脂肪酸且自由脂肪酸的一个来源是膜脂循环。

脂肪酸的转运以及转化为其他的衍生物,都需要首先被激活,之后才能被利用。为了鉴定蓝细菌中负责脂肪酸激活的蛋白,作者首先从集胞藻PCC6803和鱼腥藻PCC7120中克隆了相应的候选基因(slr1609alr3602),将其导入fadD缺失菌株XL100,通过互补实验证实这两个酶能够部分互补fadD的功能。之后作者从细胞裂解液的可溶性部分分离纯化得到该蛋白,随后通过酶活测定发现这两个酶都具有脂酰CoA合酶活性。而之前的研究报道证实从细胞膜分离纯化的Slr1609具有脂酰ACP合酶功能。作者进一步利用Western blot证实了该蛋白在集胞藻PCC6803中细胞质和细胞膜组分都存在。于是作者推测是空间位置不同导致蛋白呈现不同的构象从而展现不同的功能。

为了验证脂肪酸激活酶在脂肪酸类生物燃料生产中的作用,作者构建了一系列的集胞藻PCC6803中该基因缺失突变株和过量表达株,并检测了不同菌株中脂肪酸,脂肪烃和脂肪醇的产量。作者发现slr1609的敲除使自由脂肪酸产量提高一倍,使脂肪烃产量下降90%,使脂肪醇产量降低60%slr1609过表达对于自由脂肪酸和脂肪烃产量的影响不显著,但是能够使脂肪醇产量提高60%。这些结果显示slr1609对于脂肪烃生产是一个必要但不充分的条件,slr1609对于脂肪酸衍生物的合成具有重要作用。

对其他生物来源的脂酰CoA合成酶功能的研究表明脂酰CoA合酶能够通过调节细胞中脂酰CoA和脂肪酸之间的相对含量来调控其他基因的转录。为了进一步阐明slr1609在集胞藻PCC6803基因转录调控中的作用,作者利用基因芯片技术比较了slr1609突变株与野生型的转录谱差异。芯片对比分析显示在3,165个基因中共有299个差异表达基因,其中6个参与脂肪酸代谢的基因有不同程度的下调,此外还有一些参与光合作用,基因转录翻译过程和具有调节功能的基因转录发生变化。作者进一步研究还发现slr1609缺失能够改变细胞对低温的反应,也降低了细胞在高温下的光合放氧速率。

另外,作者还对可能参与膜脂循环的脂肪酶候选基因sll1969的功能进行了初步研究。通过原核表达和体外酶活表征,发现sll1969编码蛋白确实具有脂肪酶的功能,它的最适反应温度是55。通过构建集胞藻PCC6803 sll1969基因突变株分析自由脂肪酸含量和组成变化,发现Sll1969不是细胞内存在的唯一的脂肪酶。

英文摘要

Direct conversion of solar energy and carbon dioxide to ideal fuel molecules in a single biological system can be achieved by producing fatty acid-based biofuels such as fatty alcohols and alkanes with similar properties as fossil fuels in photosynthetic cyanobacteria. Fatty acid activation is crucial for lipid metabolism, energy conservation, regulation of gene expression and biosynthesis of fatty acid derivatives. Free fatty acids are typically activated by thioesterification processes and catalyzed by fatty acyl-CoA synthetase or fatty acyl-ACP synthetase. However, the routes for fatty acid activation in cyanobacteria are not well understood. In the present work, the author investigated the genes involved in fatty acid activation and generation.

In this investigation, both slr1609 and alr3602 genes encoding fatty acid activation enzymes were cloned from Synechocystis sp. PCC6803 and Anabaena sp. PCC7120 respectively.  These were identified by heterologous expression and in vitro enzymatic activity analysis. Different from previous reports stating that free fatty acids are activated through fatty acyl-ACP synthetase encoded by these genes in cyanobacteria, they have also been proved to possess activities for fatty acyl-CoA synthetase by in vitro enzymatic activity analysis and in vivo complementary experiments. The slr1609 protein is located in both cell membranes and cytosol of Synehcocystis sp. PCC6803. 

Synechocystis sp. PCC6803 mutant strains with either overexpression or deletion of slr1609 gene encoding a fatty acid activation enzyme have been constructed. Block of fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to doubling the amount of free fatty acids and decrease of fatty alkane production by 90 percent. Overexpression of slr1609 gene in wild-type Synechocystis sp. PCC6803 had no effect on production of both free fatty acids and fatty alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is essential but not limiting for efficient production of fatty alkanes. Fatty alcohol production can be significantly improved by overexpressing slr1609 gene. 

To investigate the physiological role of slr1609 protein, the differences in transcriptional profiles between wild type and slr1609 deletion mutant strain were evaluated by micro-array analysis. This analysis showed 299 differentially expressed genes which are involved in fatty acid metabolism, photosynthesis, carbon fixation, stress tolerance and other metabolic processes. Our experiments showed compositional changes of unsaturated fatty acids in membrane lipids observed in the slr1609 deletion mutant when shifted from 30 to 24 oC. Photosynthetic activity of the slr1609 mutant was found to be lower than that of wild type strain at 36 oC. From these results, we conclude that the deletion of slr1609 gene alters the response pattern to cold stress, and also decrease the photosynthetic activity at higher temperatures. 

The gene sll1969 is assumed to be involved in membrane lipid lysis. The present work identified the protein coded by sll1969 is a lipase by enzyme activity assay. Howerver, accoding to the change of content of fatty acid in sll1969 mutant strains, the sll1969 coding enzyme is not the only enzyme functioning as lipase in Synechocystis sp.PCC6803.

语种中文
学科主题生物代谢工程
公开日期2012-11-13
内容类型学位论文
源URL[http://ir.qibebt.ac.cn:8080/handle/337004/1372]  
专题青岛生物能源与过程研究所_微生物代谢工程团队
推荐引用方式
GB/T 7714
高倩倩. 蓝细菌脂肪酸激活酶的酶学性质与生理功能研究[D]. 北京. 中国科学院研究生院. 2012.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace