CORC  > 金属研究所  > 中国科学院金属研究所
题名新型CeO2改性的渗铝涂层的制备及高温腐蚀行为研究
作者徐承伟
学位类别博士
答辩日期2010-01-31
授予单位中国科学院金属研究所
授予地点金属研究所
导师王福会
关键词Ni-CeO2纳米晶前驱膜 低温渗铝涂层 扩散 高温氧化 冲蚀-腐蚀 活性元素效应
其他题名Preparation and High Temperature Corrosion Behavior of a Novel CeO2-modified Aluminized coating
学位专业腐蚀科学与防护★
中文摘要渗铝是一种十分有效地提高金属基体(如低碳钢、低合金钢等)抗高温氧化能力的表面处理工艺,但目前工业常用的固体粉末法渗铝温度一般在850oC以上。如此高的温度严重影响金属基材的组织结构和力学性能,限制了渗铝涂层更广泛的应用,因此对低温渗铝的可行性研究十分必要。 本工作采用“两步法”,即在粗晶基材(Ni或A3钢)上通过共电沉积技术制备一纳米晶Ni-CeO2复合“前驱”膜,然后在“前驱”膜上采用固体粉末法于500~700oC进行低温渗铝,制备了一种新型CeO2弥散的超细晶结构的δ-Ni2Al3涂层,标记为 (或 )。作为对比,在纳米晶纯Ni膜、粗晶Ni及A3钢基材上于相同渗铝条件下制备了不同渗铝涂层,分别标记为 (或 )、 及 。利用X射线衍射(XRD)、扫描电镜/能谱分析(SEM/EDAX)、电子探针(EPMA)、透射电镜(TEM)等方法对不同渗铝涂层的微观结构进行分析;采用热重分析仪(TGA)、自动升降循环氧化炉及实验室规模的燃煤流化床对涂层的氧化动力学、氧化膜抗剥落性能及抗腐蚀-冲蚀性能等分别进行测试,然后采用XRD、SEM/EDAX、EPMA等方法对样品进行分析,获得如下主要结论: 1) 渗铝动力学。粗晶Ni(~ 20 μm)、纳米晶纯Ni膜(~ 86 μm)及纳米晶Ni-CeO2复合膜(~ 60 μm)内的渗层生长动力学(h)随温度(T)升高而加快。温度一定时,h与渗铝时间(t)皆呈近似抛物线关系。相同渗铝参数下,渗层生长速率由大到小依次为:Ni-CeO2复合膜、纯Ni膜、粗晶Ni。这说明与粗晶Ni渗铝相比,Al原子在纳米晶Ni(尤其在Ni-CeO2复合膜)内的扩散显著提高。CeO2纳米颗粒抑制了渗铝温度下纳米晶Ni的长大是主要原因。同样,CeO2纳米颗粒也抑制了δ相的粗化,使得 中δ相晶粒度最小。 2) 恒温氧化。800~1100oC氧化动力学结果显示,与粗晶 相比,在含与不含CeO2的纳米晶Ni膜上制备的两种超细晶渗铝涂层 和 ,氧化速率明显降低,这是因为细晶结构能显著促进α-Al2O3的形核。特别是在高温(1000~1100oC)下, 表面热生长的α-Al2O3膜具有更低的生长速率和更好的抗剥落性能,这与弥散的CeO2纳米颗粒在氧化过程中起到“活性元素效应”有关。 3) 循环氧化。 和 在1000oC循环氧化5 h和60 h后表面热生长的Al2O3膜出现严重剥落。在氧化过程,空洞在氧化膜/涂层界面处形成为主要原因。而 生长的Al2O3膜无明显剥落,显示出良好的抗氧化性能。这是因为弥散的CeO2纳米颗粒自身及超细晶涂层结构中的丰富的晶界,均可作为空位的沉积源,抑制空洞在界面处形成。 4)抗腐蚀-冲蚀性能。 、 和 在燃煤流化床(550~850oC)内运行100 h后,涂层冲蚀面的退化速率较未冲蚀面严重。其中, 和 冲蚀面渗铝层完全退化,这是因为表面生长的Al2O3膜冲蚀-腐蚀交互作用下易于剥落。而 的抗腐蚀-冲蚀性能明显提高,原因在于弥散分布的CeO2纳米颗粒不仅能显著提高涂层的表面硬度,还能降低表面Al2O3膜生长速率并提高其粘附性。
语种中文
公开日期2012-04-10
页码108
内容类型学位论文
源URL[http://ir.imr.ac.cn/handle/321006/17278]  
专题金属研究所_中国科学院金属研究所
推荐引用方式
GB/T 7714
徐承伟. 新型CeO2改性的渗铝涂层的制备及高温腐蚀行为研究[D]. 金属研究所. 中国科学院金属研究所. 2010.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace