CORC  > 北京大学  > 工学院
Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner
Cheng, Alice ; Humayun, Aiza ; Cohen, David J. ; Boyan, Barbara D. ; Schwartz, Zvi
2014
关键词osteoblast differentiation laser sintering surface roughness materials properties custom implants additive manufacturing MECHANICAL-PROPERTIES TITANIUM-ALLOYS UNITED-STATES MICRON-SCALE IN-VITRO CELLS IMPLANTS INGROWTH RESPONSES HIP
DOI10.1088/1758-5082/6/4/045007
英文摘要Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15-70% with compressive moduli of 2579-3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.; Engineering, Biomedical; Materials Science, Biomaterials; SCI(E); EI; PubMed; 0; ARTICLE; bboyan@vcu.edu; 4; 045007; 6
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/341772]  
专题工学院
推荐引用方式
GB/T 7714
Cheng, Alice,Humayun, Aiza,Cohen, David J.,et al. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner[J],2014.
APA Cheng, Alice,Humayun, Aiza,Cohen, David J.,Boyan, Barbara D.,&Schwartz, Zvi.(2014).Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner..
MLA Cheng, Alice,et al."Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner".(2014).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace