CORC  > 北京大学  > 环境科学与工程学院
MAP4K4 deficiency in CD4(+) T cells aggravates lung damage induced by ozone-oxidized black carbon particles
Jin, Ming ; Chu, Hongqian ; Li, Yuan ; Tao, Xi ; Cheng, Zhiyuan ; Pan, Yao ; Meng, Qinghe ; Li, Leilei ; Hou, Xiaohong ; Chen, Yueyue ; Huang, Hongpeng ; Jia, Guang ; Shang, Jing ; Zhu, Tong ; Shang, Lanqin ; Hao, Weidong ; Wei, Xuetao
刊名ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY
2016
关键词Ozone-oxidized black carbon MAP4K4 CD4(+) T cell CD4(+)IL17(+) T cell Lung inflammation PARTICULATE MATTER INSULIN-RESISTANCE AIR-POLLUTION KINASE ASSOCIATION ACTIVATION GENERATION DISEASE TRAF2
DOI10.1016/j.etap.2016.08.006
英文摘要As the main composition of combustion, black carbon (BC) is becoming more and more noticeable at home and abroad. Ozone-oxidized black carbon (oBC) was produced through aging of ozone, one of the near-surface pollutants, to black carbon. And oBC was found to be more oxidation and cell toxicity when compared with BC. Besides, as a key cell, of immunity, whether CD4(+) T cell would involve in lung inflammation induced by particular matter is still unclear. This study aims to observe the effect of oBC on lung damage in mice and discuss how the functional MAP4K4 defect CD4(+) T cells (conditional knockout of MAP4K4) presents its role in this process. In our study, MAP4K4 deletion in CD4(+) T cells (MAP4K4 cKO) could increase cell number of macrophages, lymphocytes and neutrophils in bronchoalveolar lavage fluid (BALF) exposed to oBC. MAP4K4 deletion in CD4(+) T cell also affected CD4(+) T cell differentiation in mediastinal lymph nodes after oBC stimulation. The number of CD4(+)IL17(+) T cell increased obviously. The levels of IL-6 mRNA of lung in MAP4K4 cKO mice was higher than that in wild type mice after exposed to oBC, while the level of IL-6 in BALF had the same trend. Histological examination showed that MAP4K4 deletion in CD4(+) T cells affected lung inflammation induced by oBC. Results indicated that MAP4K4 cKO in CD4(+) T cells upgraded the level of inflammation in lung when exposed to oBC, which may be connected to the CD4(+) T cell differentiation and JNK, ERK and P38 pathways. (C) 2016 Elsevier B.V. All rights reserved.; National Natural Science Foundation of China [21190051]; SCI(E); PubMed; ARTICLE; weixt1010@gmail.com; 246-254; 46
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/493288]  
专题环境科学与工程学院
推荐引用方式
GB/T 7714
Jin, Ming,Chu, Hongqian,Li, Yuan,et al. MAP4K4 deficiency in CD4(+) T cells aggravates lung damage induced by ozone-oxidized black carbon particles[J]. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY,2016.
APA Jin, Ming.,Chu, Hongqian.,Li, Yuan.,Tao, Xi.,Cheng, Zhiyuan.,...&Wei, Xuetao.(2016).MAP4K4 deficiency in CD4(+) T cells aggravates lung damage induced by ozone-oxidized black carbon particles.ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY.
MLA Jin, Ming,et al."MAP4K4 deficiency in CD4(+) T cells aggravates lung damage induced by ozone-oxidized black carbon particles".ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY (2016).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace