CORC  > 北京大学  > 地球与空间科学学院
Pore structure of transitional shales in the Ordos Basin, NW China: Effects of composition on gas storage capacity
Xiong, Fengyang ; Jiang, Zhenxue ; Li, Peng ; Wang, Xiangzeng ; Bi, He ; Li, Yirun ; Wang, Ziyuan ; Amooie, Mohammad Amin ; Soltanian, Mohamad Reza ; Moortgat, Joachim
刊名FUEL
2017
关键词Shale gas Transitional shales Pore structure Composition Yanchang area Ordos Basin MISSISSIPPIAN BARNETT SHALE FORT-WORTH BASIN NORTHEASTERN BRITISH-COLUMBIA LONGMAXI MARINE SHALE ORGANIC-RICH SHALES NORTH-CENTRAL TEXAS METHANE ADSORPTION SICHUAN BASIN GEOLOGICAL CONTROLS THERMAL MATURITY
DOI10.1016/j.fuel.2017.05.083
英文摘要The recoverable resource of shale gas is 25 trillion cubic meter, 33% of which is stored in transitional shales in China. This work investigates the effects of organic and inorganic compositions on the development of Upper Paleozoic transitional shale pore structures through a combination of petrophysical and geochemical measurements. 42 shale samples were collected from marsh-lagoon and coastal delta settings in the Ordos Basin, NW China. The samples include the Upper Permian Shanxi shale (average total organic carbon (TOC) of 1.58 wt%, Type III kerogen, average vitrinite reflectance (Ro) 2.6%), and the Upper Carboniferous Benxi shale (average TOC of 1.91 wt%, Type III kerogen, average Ro 2.74%) at the overmature stage or dry gas window. An important characteristic of these shales is the large proportion of clay minerals (similar to 69% in Benxi shale and 54% in Shanxi shale). The quartz content is similar to 17% and 40% for Benxi and Shanxi shales, respectively. The pore structure of three samples and one isolated kerogen sample is analyzed via both low-pressure nitrogen and carbon dioxide adsorption methods. Low pressure nitrogen adsorption experiments show that Benxi and Shanxi shales characterized by ultra-low porosity and permeability develop mainly silt-shaped pores and potentially ink-bottle-shaped pores. We find that increasing fractions of organic matter (OM) result in a decrease in both total pore volume and specific surface area (SSA). Low pressure carbon dioxide adsorption experiments show that micropore volumes nonlinearly increase with increasing OM, although the contribution of organic micropore volume is limited. The mesopore and macropore volumes of inorganic compositions contribute mostly to the total pore; National Natural Science Foundation of China [41472112]; National Science and Technology Major Project [2011ZX05018-02]; China Geological Survey project [12120114046701]; Ohio State University Office of Energy and Environment; U.S. Department of Energy's (DOE) Office of Fossil Energy [FEAA-045]; U.S. DOE [DE-AC05-00OR22725]; SCI(E); ARTICLE; 504-515; 206
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/470461]  
专题地球与空间科学学院
推荐引用方式
GB/T 7714
Xiong, Fengyang,Jiang, Zhenxue,Li, Peng,et al. Pore structure of transitional shales in the Ordos Basin, NW China: Effects of composition on gas storage capacity[J]. FUEL,2017.
APA Xiong, Fengyang.,Jiang, Zhenxue.,Li, Peng.,Wang, Xiangzeng.,Bi, He.,...&Moortgat, Joachim.(2017).Pore structure of transitional shales in the Ordos Basin, NW China: Effects of composition on gas storage capacity.FUEL.
MLA Xiong, Fengyang,et al."Pore structure of transitional shales in the Ordos Basin, NW China: Effects of composition on gas storage capacity".FUEL (2017).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace