CORC  > 北京大学  > 城市与环境学院
OMI-measured increasing SO2 emissions due to energy industry expansion and relocation in northwestern China
Ling, Zaili ; Huang, Tao ; Zhao, Yuan ; Li, Jixiang ; Zhang, Xiaodong ; Wang, Jinxiang ; Lian, Lulu ; Mao, Xiaoxuan ; Gao, Hong ; Ma, Jianmin
刊名ATMOSPHERIC CHEMISTRY AND PHYSICS
2017
关键词OZONE MONITORING INSTRUMENT SULFUR-DIOXIDE EMISSIONS TREND DETECTION SHELTER FOREST NORTHERN CHINA MANN-KENDALL INVENTORY POLLUTION POLLUTANTS RETRIEVAL
DOI10.5194/acp-17-9115-2017
英文摘要The rapid growth of economy makes China the largest energy consumer and sulfur dioxide (SO2)emitter in the world. In this study, we estimated the trends and step changes in the planetary boundary layer (PBL) vertical column density (VCD) of SO2 from 2005 to 2015 over China measured by the Ozone Monitoring Instrument (OMI). We show that these trends and step change years coincide with the effective date and period of the national strategy for energy development and relocation in northwestern China and the regulations in the reduction of SO2 emissions. Under the national regulations for the reduction of SO2 emissions in eastern and southern China, SO2 VCD in the Pearl River Delta (PRD) of southern China exhibited the largest decline during 2005-2015 at a rate of -7% yr(-1)), followed by the North China Plain (NCP) (-6.7% yr(-1)), Sichuan Basin (-6.3% yr(-1)), and Yangtze River Delta (YRD) (-6% yr(-1)). The Mann-Kendall (MK) test reveals the step change points of declining SO2 VCD in 2009 for the PRD and 2012-2013 for eastern China responding to the implementation of SO2 control regulation in these regions. In contrast, the MK test and regression analysis also revealed increasing trends of SO2 VCD in northwestern China, particularly for several "hot spots" featured by growing SO2 VCD in those large-scale energy industry bases in northwestern China. The enhanced SO2 VCD is potentially attributable to increasing SO2 emissions due to the development of large-scale energy industry bases in energy-abundant northwestern China under the national strategy for the energy safety of China in the 21st century. We show that these largescale energy industry bases could overwhelm the trends and changes in provincial total SO2 emissions in northwestern China and contribute increasingly to the national total SO2 emissions in China. Given that northwestern China is more ecologically fragile and uniquely susceptible to atmospheric pollution than the rest of China, increasing SO2 emissions in this part of China should not be overlooked and merit scientific research.; National Natural Science Foundation of China [41503089, 41371478, 41671460]; Gansu Province Science and Technology Program for Livelihood of the People [1503FCMA003]; Natural Science Foundation of Gansu Province of China [1506RJZA212]; Fundamental Research Funds for the Central Universities [lzujbky-2016-249, lzujbky-2016-253]; SCI(E); SSCI; ARTICLE; 14; 9115-9131; 17
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/469072]  
专题城市与环境学院
推荐引用方式
GB/T 7714
Ling, Zaili,Huang, Tao,Zhao, Yuan,et al. OMI-measured increasing SO2 emissions due to energy industry expansion and relocation in northwestern China[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2017.
APA Ling, Zaili.,Huang, Tao.,Zhao, Yuan.,Li, Jixiang.,Zhang, Xiaodong.,...&Ma, Jianmin.(2017).OMI-measured increasing SO2 emissions due to energy industry expansion and relocation in northwestern China.ATMOSPHERIC CHEMISTRY AND PHYSICS.
MLA Ling, Zaili,et al."OMI-measured increasing SO2 emissions due to energy industry expansion and relocation in northwestern China".ATMOSPHERIC CHEMISTRY AND PHYSICS (2017).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace