CORC  > 北京大学  > 生命科学学院
A Small-Molecule Screen Identifies L-Kynurenine as a Competitive Inhibitor of TAA1/TAR Activity in Ethylene-Directed Auxin Biosynthesis and Root Growth in Arabidopsis
He, Wenrong ; Brumos, Javier ; Li, Hongjiang ; Ji, Yusi ; Ke, Meng ; Gong, Xinqi ; Zeng, Qinglong ; Li, Wenyang ; Zhang, Xinyan ; An, Fengying ; Wen, Xing ; Li, Pengpeng ; Chu, Jinfang ; Sun, Xiaohong ; Yan, Cunyu ; Yan, Nieng ; Xie, De-Yu ; Raikhel, Natasha ; Yang, Zhenbiao ; Stepanova, Anna N. ; Alonso, Jose M. ; Guo, Hongwei
刊名plant cell
2011
关键词SIGNAL-TRANSDUCTION PATHWAY PLANT DEVELOPMENT RESPONSE PATHWAY INSENSITIVE MUTANTS CHEMICAL GENETICS QUINOLINIC ACID D-TRYPTOPHAN PROTEIN TRANSPORT THALIANA
DOI10.1105/tpc.111.089029
英文摘要The interactions between phytohormones are crucial for plants to adapt to complex environmental changes. One example is the ethylene-regulated local auxin biosynthesis in roots, which partly contributes to ethylene-directed root development and gravitropism. Using a chemical biology approach, we identified a small molecule, L-kynurenine (Kyn), which effectively inhibited ethylene responses in Arabidopsis thaliana root tissues. Kyn application repressed nuclear accumulation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Moreover, Kyn application decreased ethylene-induced auxin biosynthesis in roots, and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE RELATEDs (TAA1/TARs), the key enzymes in the indole-3-pyruvic acid pathway of auxin biosynthesis, were identified as the molecular targets of Kyn. Further biochemical and phenotypic analyses revealed that Kyn, being an alternate substrate, competitively inhibits TAA1/TAR activity, and Kyn treatment mimicked the loss of TAA1/TAR functions. Molecular modeling and sequence alignments suggested that Kyn effectively and selectively binds to the substrate pocket of TAA1/TAR proteins but not those of other families of aminotransferases. To elucidate the destabilizing effect of Kyn on EIN3, we further found that auxin enhanced EIN3 nuclear accumulation in an EIN3 BINDING F-BOX PROTEIN1 (EBF1)/EBF2-dependent manner, suggesting the existence of a positive feedback loop between auxin biosynthesis and ethylene signaling. Thus, our study not only reveals a new level of interactions between ethylene and auxin pathways but also offers an efficient method to explore and exploit TAA1/TAR-dependent auxin biosynthesis.; http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000298674200010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701 ; Biochemistry & Molecular Biology; Plant Sciences; Cell Biology; SCI(E); PubMed; 77; ARTICLE; 11; 3944-3960; 23
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/162522]  
专题生命科学学院
推荐引用方式
GB/T 7714
He, Wenrong,Brumos, Javier,Li, Hongjiang,et al. A Small-Molecule Screen Identifies L-Kynurenine as a Competitive Inhibitor of TAA1/TAR Activity in Ethylene-Directed Auxin Biosynthesis and Root Growth in Arabidopsis[J]. plant cell,2011.
APA He, Wenrong.,Brumos, Javier.,Li, Hongjiang.,Ji, Yusi.,Ke, Meng.,...&Guo, Hongwei.(2011).A Small-Molecule Screen Identifies L-Kynurenine as a Competitive Inhibitor of TAA1/TAR Activity in Ethylene-Directed Auxin Biosynthesis and Root Growth in Arabidopsis.plant cell.
MLA He, Wenrong,et al."A Small-Molecule Screen Identifies L-Kynurenine as a Competitive Inhibitor of TAA1/TAR Activity in Ethylene-Directed Auxin Biosynthesis and Root Growth in Arabidopsis".plant cell (2011).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace