CORC  > 金属研究所  > 中国科学院金属研究所
Large Scale Two-Dimensional Flux-Closure Domain Arrays in Oxide Multilayers and Their Controlled Growth
Liu, Ying; Wang, Yu-Jia; Zhu, Yin-Lian; Lei, Chi-Hou; Tang, Yun-Long; Li, Shuang; Zhang, Si-Rui; Li, Jiangyu; Ma, Xiu-Liang; Zhu, YL
刊名AMER CHEMICAL SOC
2017-12-01
卷号17期号:12页码:7258-7266
关键词Ferroelectric Oxide Pbtio3 Flux-closure Domain Aberration Corrected Scanning Transmission Electron Microscope Phase Field Modeling
ISSN号1530-6984
英文摘要Ferroelectric flux-closures are very promising in high-density storage and other nanoscale electronic devices. To make the data bits addressable, the nanoscale flux-closures are required to be periodic via a controlled growth. Although flux-closure quadrant arrays with 180 degrees domain walls perpendicular to the interfaces (V-closure) have been observed in strained ferroelectric PbTiO3 films, the flux-closure quadrants therein are rather asymmetric. In this work, we report not only a periodic array of the symmetric flux-closure quadrants with 180 degrees domain walls parallel to the interfaces (H-closure) but also a large scale alternative stacking of the V- and H-closure arrays in PbTiO3/SrTiO3 multilayers. On the basis of a combination of aberration-corrected scanning transmission electron microscopic imaging and phase field modeling, we establish the phase diagram in the layer-by-layer two-dimensional arrays versus the thickness ratio of adjacent PbTiO3 films, in which energy competitions play dominant roles. The manipulation of these flux-closures may stimulate the design and development of novel nanoscale ferroelectric devices with exotic properties.; Ferroelectric flux-closures are very promising in high-density storage and other nanoscale electronic devices. To make the data bits addressable, the nanoscale flux-closures are required to be periodic via a controlled growth. Although flux-closure quadrant arrays with 180 degrees domain walls perpendicular to the interfaces (V-closure) have been observed in strained ferroelectric PbTiO3 films, the flux-closure quadrants therein are rather asymmetric. In this work, we report not only a periodic array of the symmetric flux-closure quadrants with 180 degrees domain walls parallel to the interfaces (H-closure) but also a large scale alternative stacking of the V- and H-closure arrays in PbTiO3/SrTiO3 multilayers. On the basis of a combination of aberration-corrected scanning transmission electron microscopic imaging and phase field modeling, we establish the phase diagram in the layer-by-layer two-dimensional arrays versus the thickness ratio of adjacent PbTiO3 films, in which energy competitions play dominant roles. The manipulation of these flux-closures may stimulate the design and development of novel nanoscale ferroelectric devices with exotic properties.
学科主题Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
语种英语
资助机构National Natural Science Foundation of China [51571197, 51231007, 51501194, 51671194, 51401212, 51521091, 11627801]; National Basic Research Program of China [2014CB921002]; Key Research Program of Frontier Sciences CAS [QYZDJ-SSW-JSC010]; IMR SYNL-T.S. Ke Research Fellowship; Youth Innovation Promotion Association CAS [2016177]; National Key Research Program of China [2016YFA0201001]
公开日期2018-01-10
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/78943]  
专题金属研究所_中国科学院金属研究所
通讯作者Zhu, YL; Ma, XL (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Wenhua Rd 72, Shenyang 110016, Liaoning, Peoples R China.; Ma, XL (reprint author), Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou 730050, Gansu, Peoples R China.
推荐引用方式
GB/T 7714
Liu, Ying,Wang, Yu-Jia,Zhu, Yin-Lian,et al. Large Scale Two-Dimensional Flux-Closure Domain Arrays in Oxide Multilayers and Their Controlled Growth[J]. AMER CHEMICAL SOC,2017,17(12):7258-7266.
APA Liu, Ying.,Wang, Yu-Jia.,Zhu, Yin-Lian.,Lei, Chi-Hou.,Tang, Yun-Long.,...&Ma, XL .(2017).Large Scale Two-Dimensional Flux-Closure Domain Arrays in Oxide Multilayers and Their Controlled Growth.AMER CHEMICAL SOC,17(12),7258-7266.
MLA Liu, Ying,et al."Large Scale Two-Dimensional Flux-Closure Domain Arrays in Oxide Multilayers and Their Controlled Growth".AMER CHEMICAL SOC 17.12(2017):7258-7266.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace