CORC  > 金属研究所  > 中国科学院金属研究所
Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates
Jia, Hong-Min; Feng, Xiao-Hui; Yang, Yuan-Sheng; Yang, YS (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China.; Yang, YS (reprint author), Shandong Key Lab High Strength Lightweight Metall, Jinan 250014, Shandong, Peoples R China.
刊名CHINESE ACAD SCIENCES, INST METAL RESEARCH
2017-12-01
卷号30期号:12页码:1185-1191
关键词Directional Solidification Mg-zn Alloy Microstructure Evolution Primary Dendritic Arm Spacing Growth Orientation
ISSN号1006-7191
英文摘要The microstructure evolution and growth orientation of directionally solidified Mg-4 wt% Zn alloy in the growth rate range from 20 to 200 mu m/s were investigated. A typical cellular structure was observed with a growth rate of 20 mu m/s, and the cellular spacing was 115 mu m. When the growth rate increased to 60 mu m/s, cellular structure with some developed perturbations was obtained and the cellular spacing was 145 mu m, suggesting that the cell-to-dendrite transition happened at the growth rate lower than 60 mu m/s. As the growth rate further increased, the microstructure was dendritic and the primary dendritic arm spacing decreased. The relationship between the primary dendritic arm spacings and the growth rates was in good agreement with Trivedi model during dendritic growth. Besides, X-ray diffraction and transmission electron microscopy analyses showed that the growth direction of directionally solidified Mg-4 wt% Zn alloy was < 11 (2) over bar0 > ilay in{0002} crystal plane, and the preferred orientation was explained with the lattice vibration model for one-dimensional monatomic chain.; The microstructure evolution and growth orientation of directionally solidified Mg-4 wt% Zn alloy in the growth rate range from 20 to 200 mu m/s were investigated. A typical cellular structure was observed with a growth rate of 20 mu m/s, and the cellular spacing was 115 mu m. When the growth rate increased to 60 mu m/s, cellular structure with some developed perturbations was obtained and the cellular spacing was 145 mu m, suggesting that the cell-to-dendrite transition happened at the growth rate lower than 60 mu m/s. As the growth rate further increased, the microstructure was dendritic and the primary dendritic arm spacing decreased. The relationship between the primary dendritic arm spacings and the growth rates was in good agreement with Trivedi model during dendritic growth. Besides, X-ray diffraction and transmission electron microscopy analyses showed that the growth direction of directionally solidified Mg-4 wt% Zn alloy was < 11 (2) over bar0 > ilay in{0002} crystal plane, and the preferred orientation was explained with the lattice vibration model for one-dimensional monatomic chain.
学科主题Metallurgy & Metallurgical Engineering
语种英语
公开日期2018-01-10
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/78959]  
专题金属研究所_中国科学院金属研究所
通讯作者Yang, YS (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China.; Yang, YS (reprint author), Shandong Key Lab High Strength Lightweight Metall, Jinan 250014, Shandong, Peoples R China.
推荐引用方式
GB/T 7714
Jia, Hong-Min,Feng, Xiao-Hui,Yang, Yuan-Sheng,et al. Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates[J]. CHINESE ACAD SCIENCES, INST METAL RESEARCH,2017,30(12):1185-1191.
APA Jia, Hong-Min,Feng, Xiao-Hui,Yang, Yuan-Sheng,Yang, YS ,&Yang, YS .(2017).Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates.CHINESE ACAD SCIENCES, INST METAL RESEARCH,30(12),1185-1191.
MLA Jia, Hong-Min,et al."Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates".CHINESE ACAD SCIENCES, INST METAL RESEARCH 30.12(2017):1185-1191.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace