CORC  > 金属研究所  > 中国科学院金属研究所
One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-dSupercapacitors with High Energy Density
Xiao, Han; Wu, Zhong-Shuai; Chen, Long; Zhou, Feng; Zheng, Shuanghao; Ren, Wencai; Cheng, Hui-Ming; Bao, Xinhe; Wu, ZS (reprint author), Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China.; Ren, WC (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China.
刊名AMER CHEMICAL SOC
2017-07-01
卷号11期号:7页码:7284-7292
关键词Phosphorene Graphene Micro-supercapacitors Ionic Liquid Energy Storage
ISSN号1936-0851
英文摘要Rational engineering and simplified fabrication of high-energy micro-supercapacitors (MSCs) using graphene and other 2D nanosheets are of great value for flexible and integrated electronics. Here we develop onestep mask-assisted simplified fabrication of high-energy MSCs (PG-MSCs) based on the interdigital hybrid electrode (PG) patterns of stacking high-quality phosphorene nanosheets and electrochemically exfoliated graphene in ionic liquid electrolyte. The hybrid PG films with interdigital patterns were directly manufactured by layer-by layer deposition of phosphorene and graphene nanosheets with the assistance of a customized interdigital mask, and directly transferred onto a flexible substrate. The resultant patterned PG films present outstanding uniformity, flexibility, conductivity (319 S cm(-1)), and structural integration, which can directly serve as binder- and additive-free flexible electrodes for MSCs. Remarkably, PG-MSCs deliver remarkable energy density of 11.6 mWh cm(-3), outperforming most nanocarbon-based MSCs. Moreover, our PG-MSCs show outstanding flexibility and stable performance with slight capacitance fluctuation even under highly folded states. In addition, our simplified mask-assisted strategy for PG-MSCs is highly flexible for simplified production of parallelly and serially interconnected modular power sources, without need of conventional metal-based interconnects and contacts, for designable integrated circuits with high output current and voltage.; Rational engineering and simplified fabrication of high-energy micro-supercapacitors (MSCs) using graphene and other 2D nanosheets are of great value for flexible and integrated electronics. Here we develop onestep mask-assisted simplified fabrication of high-energy MSCs (PG-MSCs) based on the interdigital hybrid electrode (PG) patterns of stacking high-quality phosphorene nanosheets and electrochemically exfoliated graphene in ionic liquid electrolyte. The hybrid PG films with interdigital patterns were directly manufactured by layer-by layer deposition of phosphorene and graphene nanosheets with the assistance of a customized interdigital mask, and directly transferred onto a flexible substrate. The resultant patterned PG films present outstanding uniformity, flexibility, conductivity (319 S cm(-1)), and structural integration, which can directly serve as binder- and additive-free flexible electrodes for MSCs. Remarkably, PG-MSCs deliver remarkable energy density of 11.6 mWh cm(-3), outperforming most nanocarbon-based MSCs. Moreover, our PG-MSCs show outstanding flexibility and stable performance with slight capacitance fluctuation even under highly folded states. In addition, our simplified mask-assisted strategy for PG-MSCs is highly flexible for simplified production of parallelly and serially interconnected modular power sources, without need of conventional metal-based interconnects and contacts, for designable integrated circuits with high output current and voltage.
学科主题Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
语种英语
资助机构National Natural Science Foundation of China [51572259, 51325205, 51290273, 51521091]; National Key RAMP;D Program of China [2016YBF0100100, 2016YFA0200101, 2016YFA0200200]; Natural Science Foundation of Liaoning Province [201602737]; Thousand Youth Talents Plan of China, DICP [Y5610121T3]; China Postdoctoral Science Foundation [2016M601348]
公开日期2018-01-10
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/79179]  
专题金属研究所_中国科学院金属研究所
通讯作者Wu, ZS (reprint author), Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China.; Ren, WC (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China.
推荐引用方式
GB/T 7714
Xiao, Han,Wu, Zhong-Shuai,Chen, Long,et al. One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-dSupercapacitors with High Energy Density[J]. AMER CHEMICAL SOC,2017,11(7):7284-7292.
APA Xiao, Han.,Wu, Zhong-Shuai.,Chen, Long.,Zhou, Feng.,Zheng, Shuanghao.,...&Ren, WC .(2017).One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-dSupercapacitors with High Energy Density.AMER CHEMICAL SOC,11(7),7284-7292.
MLA Xiao, Han,et al."One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-dSupercapacitors with High Energy Density".AMER CHEMICAL SOC 11.7(2017):7284-7292.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace