CORC  > 金属研究所  > 中国科学院金属研究所
Role of the X and n factors in ion-irradiation induced phase transformations of M(n+1)AX(n) phases
Wang, CX; Yang, TF; Tracy, CL; Xiao, JR; Liu, SS; Fang, Y; Yan, ZF; Ge, W; Xue, JM; Zhang, J
刊名ACTA MATERIALIA
2018-02-01
卷号144页码:432-446
关键词Augmented-wave Method Max Phases Structural Transitions Electronic-structure Damage Evolution Ti3alc2 Ti2alc Ti3sic2 Ceramics Ti4aln3
ISSN号1359-6454
英文摘要Phase transitions induced in hcp M(n+1)AX(n) phases (Ti2AlN, Ti2AlC, and Ti4AlN3) by 1 MeV Au+ ion irradiation were investigated, over a series of ion fluences ranging from 1 x 10(14) to 2 x 10(16) ions cm(-2), by transmission electron microscopy (TEM) and synchrotron grazing incidence X-ray diffraction (GIXRD). Irradiation-induced structural evolutions were observed using high-resolution TEM (HRTEM) imaging and selected area electron diffraction (SAED). Based on phase contrast imaging and electron diffraction pattern (EDP) simulations, the atomic-scale mechanisms for the phase transitions were determined. Transformations of the initial hcp phases to the intermediate gamma-phases and fcc phases were driven by the formation of Ti/Al antisite defects and extended stacking faults induced by ion irradiation. By comparing the transformation behavior of Ti2AlN with that of Ti2AlC and Ti4AlN3 under the same irradiation conditions, using both the experimental data and first-principles calculations, the role of the X and n parameters in the radiation responses of M(n+1)AX(n) phases were elucidated. The susceptibilities of materials in this Ti-Al-X (X = C, N) system to irradiation-induced phase transitions were determined with respect to the bonding characteristics and compositions of these MAX phases. Ti2AlC is slightly less susceptible to the radiation-induced phase transformation than Ti2AlN, which is attributed to the stronger Ti-Al bond covalency in Ti2AlN. Ti4AlN3 is more resistant to radiation-induced phase transformations than is Ti2AlN, due to the lower Al content and lower anion vacancy ratio in the irradiation-induced solid solution phases. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.; Phase transitions induced in hcp M(n+1)AX(n) phases (Ti2AlN, Ti2AlC, and Ti4AlN3) by 1 MeV Au+ ion irradiation were investigated, over a series of ion fluences ranging from 1 x 10(14) to 2 x 10(16) ions cm(-2), by transmission electron microscopy (TEM) and synchrotron grazing incidence X-ray diffraction (GIXRD). Irradiation-induced structural evolutions were observed using high-resolution TEM (HRTEM) imaging and selected area electron diffraction (SAED). Based on phase contrast imaging and electron diffraction pattern (EDP) simulations, the atomic-scale mechanisms for the phase transitions were determined. Transformations of the initial hcp phases to the intermediate gamma-phases and fcc phases were driven by the formation of Ti/Al antisite defects and extended stacking faults induced by ion irradiation. By comparing the transformation behavior of Ti2AlN with that of Ti2AlC and Ti4AlN3 under the same irradiation conditions, using both the experimental data and first-principles calculations, the role of the X and n parameters in the radiation responses of M(n+1)AX(n) phases were elucidated. The susceptibilities of materials in this Ti-Al-X (X = C, N) system to irradiation-induced phase transitions were determined with respect to the bonding characteristics and compositions of these MAX phases. Ti2AlC is slightly less susceptible to the radiation-induced phase transformation than Ti2AlN, which is attributed to the stronger Ti-Al bond covalency in Ti2AlN. Ti4AlN3 is more resistant to radiation-induced phase transformations than is Ti2AlN, due to the lower Al content and lower anion vacancy ratio in the irradiation-induced solid solution phases. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
学科主题Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
语种英语
资助机构National Magnetic Confinement Fusion Energy Research Project of China [2015GB113000]; National Natural Science Foundation of China [11675005]; Energy Frontier Research Center "Materials Science of Actinides" - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; National Science Foundation [ECCS-1542152]
公开日期2018-06-05
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/79549]  
专题金属研究所_中国科学院金属研究所
通讯作者Wang, YG (reprint author), Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
推荐引用方式
GB/T 7714
Wang, CX,Yang, TF,Tracy, CL,et al. Role of the X and n factors in ion-irradiation induced phase transformations of M(n+1)AX(n) phases[J]. ACTA MATERIALIA,2018,144:432-446.
APA Wang, CX.,Yang, TF.,Tracy, CL.,Xiao, JR.,Liu, SS.,...&Wang, YG .(2018).Role of the X and n factors in ion-irradiation induced phase transformations of M(n+1)AX(n) phases.ACTA MATERIALIA,144,432-446.
MLA Wang, CX,et al."Role of the X and n factors in ion-irradiation induced phase transformations of M(n+1)AX(n) phases".ACTA MATERIALIA 144(2018):432-446.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace