CORC  > 金属研究所  > 中国科学院金属研究所
Investigation on tensile deformation behavior of compacted graphite iron based on cohesive damage model
Zhang, YY; Pang, JC; Shen, RL; Qiu, Y; Li, SX; Zhang, ZF; Zhang, ZF (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.
刊名MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
2018-01-24
卷号713页码:260-268
关键词Representative Volume Element Fiber-reinforced Composites 3d Woven Composites Strength Cast-iron X-ray Tomography Mechanical-properties Thermal-conductivity Quantitative Description Heterogeneous Materials Automatic-generation
ISSN号0921-5093
英文摘要Compacted graphite iron (CGI) is a typical engineering material with double phases, of which graphite morphology largely determines its mechanical performances. Although microstructural effects have been widely investigated, quantitative relations between mechanical properties and microstructures are still limited. In this study, a micro-scale damage cohesive finite element model (CFEM) was reconstructed and identified based on the tensile properties and damage characteristics of CGI, and then the effects of graphite including distribution, size, volume fraction and morphology on tensile behaviors were investigated. The agreement of yield strength and fracture mechanism between experimental and simulation results shows that the developed methods, combining the digital image-based technique (DIT) and CFEM, can be used to simulate CGI effectively. Furthermore, the quantitative relations between yield strength and microstructures were established. It is found that graphite distribution and volume fraction affect the yield strength much more compared with graphite size and morphology. Specifically, interesting results were found that yield strength does not monotonically change with volume fraction and aspect ratio of graphite, but reaches a maximum value under an optimal graphite size, which is in contrast to the traditional results. The established quantitative relations between microstructures and tensile properties of cast alloys can be utilized to design and manufacture the metallic composite with optimal mechanical properties.; Compacted graphite iron (CGI) is a typical engineering material with double phases, of which graphite morphology largely determines its mechanical performances. Although microstructural effects have been widely investigated, quantitative relations between mechanical properties and microstructures are still limited. In this study, a micro-scale damage cohesive finite element model (CFEM) was reconstructed and identified based on the tensile properties and damage characteristics of CGI, and then the effects of graphite including distribution, size, volume fraction and morphology on tensile behaviors were investigated. The agreement of yield strength and fracture mechanism between experimental and simulation results shows that the developed methods, combining the digital image-based technique (DIT) and CFEM, can be used to simulate CGI effectively. Furthermore, the quantitative relations between yield strength and microstructures were established. It is found that graphite distribution and volume fraction affect the yield strength much more compared with graphite size and morphology. Specifically, interesting results were found that yield strength does not monotonically change with volume fraction and aspect ratio of graphite, but reaches a maximum value under an optimal graphite size, which is in contrast to the traditional results. The established quantitative relations between microstructures and tensile properties of cast alloys can be utilized to design and manufacture the metallic composite with optimal mechanical properties.
学科主题Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
语种英语
资助机构National Natural Science Foundation of China (NSFC) [51331007]; General Project of Liaoning Education Department [L2015364]; Natural Science Foundation of Liaoning [20170520346]
公开日期2018-06-05
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/79569]  
专题金属研究所_中国科学院金属研究所
通讯作者Pang, JC; Zhang, ZF (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Zhang, YY,Pang, JC,Shen, RL,et al. Investigation on tensile deformation behavior of compacted graphite iron based on cohesive damage model[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2018,713:260-268.
APA Zhang, YY.,Pang, JC.,Shen, RL.,Qiu, Y.,Li, SX.,...&Zhang, ZF .(2018).Investigation on tensile deformation behavior of compacted graphite iron based on cohesive damage model.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,713,260-268.
MLA Zhang, YY,et al."Investigation on tensile deformation behavior of compacted graphite iron based on cohesive damage model".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 713(2018):260-268.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace