Varying Sensitivity of East Asia Summer Monsoon Circulation to Temperature Change Since Last Glacial Maximum
Cheng, Jun1; Ma, Wuyang1; Liu, Zhengyu2; Wu, Haibin3,4
刊名GEOPHYSICAL RESEARCH LETTERS
2019-08-16
卷号46期号:15页码:9103-9109
ISSN号0094-8276
DOI10.1029/2019GL083405
英文摘要Proxy records of the East Asia summer monsoon (EASM) and temperature reveal an in-phase relationship of the two since the Last Glacial Maximum (LGM), which is consistent with their expected physical relationship; but the response amplitude of EASM to temperature variation seemed larger over the Holocene than over the last deglaciation. Using a state-of-the-art transient climate simulation, we confirm this proxy-inferred phenomenon, and estimate the "sensitivity of EASM circulation to summer temperature over adjacent region" (defined as S-MT here) is about five times over the Holocene of that over the last deglaciation. This varying S-MT attributed to the diverse S-MT under the solo forcing of orbital insolation and CO2 (eight times of the former vs. the latter), and their varying confounding effect along time. The results presented here should improve our understanding of the past change of EASM, and help project its variation magnitude under ongoing CO2-forced global warming. Plain Language Summary The East Asia summer monsoon (EASM) dominates the eco-environment of a region where nearly 1.6 billion people live. Its past change pushed the evolution of ancient Chinese culture, and its future change under global warming will force 1/5 of the world population to adapt. Paleoclimate records reveal a robust phenomenon of stronger EASM under a warmer world and vice versa, but the sensitivity of EASM to temperature seemed varying since the last ice age. Climate simulation confirms this phenomenon and illustrates the dominance of forcing (changes in orbital parameter and CO2 concentration) in terms of response magnitude of EASM. Compared to the response of EASM to the orbital forcing in past, the response to ever-growing CO2 forcing is relatively small.
资助项目Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China[2016YFA0600504] ; Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China[2015CB953902] ; National Natural Science Foundation of China[41776017] ; National Natural Science Foundation of China[41630527]
WOS关键词ATMOSPHERIC CO2 ; CLIMATE ; MODEL ; SURFACE ; ENERGY ; CAVE
WOS研究方向Geology
语种英语
出版者AMER GEOPHYSICAL UNION
WOS记录号WOS:000483812500054
资助机构Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China ; Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China ; Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China ; Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China ; Program of Global Change and Mitigation, Ministry of Science and Technology of the People's Republic of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China
内容类型期刊论文
源URL[http://ir.iggcas.ac.cn/handle/132A11/93561]  
专题地质与地球物理研究所_中国科学院新生代地质与环境重点实验室
通讯作者Cheng, Jun
作者单位1.Nanjing Univ Informat Sci & Technol, CIC FEMD, Joint Int Res Lab Climate & Environm Change ILCEC, Minist Educ KLME,Lab Meteorol Disaster, Nanjing, Jiangsu, Peoples R China
2.Ohio State Univ, Dept Geog, Columbus, OH 43210 USA
3.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Cenozo Geol & Environm, Beijing, Peoples R China
4.China Univ Chinese Acad Sci, CAS Ctr Excellence Life & Paleoenvironm, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Jun,Ma, Wuyang,Liu, Zhengyu,et al. Varying Sensitivity of East Asia Summer Monsoon Circulation to Temperature Change Since Last Glacial Maximum[J]. GEOPHYSICAL RESEARCH LETTERS,2019,46(15):9103-9109.
APA Cheng, Jun,Ma, Wuyang,Liu, Zhengyu,&Wu, Haibin.(2019).Varying Sensitivity of East Asia Summer Monsoon Circulation to Temperature Change Since Last Glacial Maximum.GEOPHYSICAL RESEARCH LETTERS,46(15),9103-9109.
MLA Cheng, Jun,et al."Varying Sensitivity of East Asia Summer Monsoon Circulation to Temperature Change Since Last Glacial Maximum".GEOPHYSICAL RESEARCH LETTERS 46.15(2019):9103-9109.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace