Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange
Fu, Zheng1,2; Stoy, Paul C.3; Poulter, Benjamin4; Gerken, Tobias5; Zhang, Zhen6; Wakbulcho, Guta3; Niu, Shuli1,2
刊名GLOBAL CHANGE BIOLOGY
2019-07-11
页码14
关键词carbon uptake period interannual variability maximum carbon uptake rate net ecosystem exchange phenology physiology
ISSN号1354-1013
DOI10.1111/gcb.14731
通讯作者Niu, Shuli(sniu@igsnrr.ac.cn)
英文摘要Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated with ecological processes that determine the IAV of NEE. Here, we decompose the annual NEE of global terrestrial ecosystems into their phenological and physiological components, namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period (CUP), and two parameters, alpha and beta, that describe the ratio between actual versus hypothetical maximum C sink and source, respectively. Using long-term observed NEE from 66 eddy covariance sites and global products derived from FLUXNET observations, we found that the IAV of NEE is determined predominately by MCU at the global scale, which explains 48% of the IAV of NEE on average while alpha, CUP, beta, and MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water-limited ecosystems versus temperature- and radiation-limited ecosystems; 31% of the IAV of NEE is determined by the IAV of CUP in water-limited ecosystems, and 60% of the IAV of NEE is determined by the IAV of MCU in temperature- and radiation-limited ecosystems. The Lund-Potsdam-Jena (LPJ) model and the Multi-scale Synthesis and Terrestrial Model Inter-comparison Project (MsTMIP) models underestimate the contribution of MCU to the IAV of NEE by about 18% on average, and overestimate the contribution of CUP by about 25%. This study provides a new perspective on the proximate causes of the IAV of NEE, which suggest that capturing the variability of MCU is critical for modeling the IAV of NEE across most of the global land surface.
资助项目National Key R&D Program of China[2018YFA0606102] ; National Natural Science Foundation of China[31625006] ; Chinese Academy of Sciences[131A11KYSB20180010] ; Gordon and Betty Moore Foundation[GBMF5439] ; NASA Terrestrial Ecology Program ; National Science Foundation[DEB 1552976] ; National Science Foundation[OIA 1632810] ; National Science Foundation[EF 1702029] ; USDA-NIFA[228396]
WOS关键词GROSS PRIMARY PRODUCTIVITY ; MODEL INTERCOMPARISON PROJECT ; PROGRAM MULTISCALE SYNTHESIS ; PLANT PHENOLOGY ; SEMIARID ECOSYSTEMS ; CO2 ; CLIMATE ; FLUXES ; FOREST ; RESPIRATION
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
语种英语
出版者WILEY
WOS记录号WOS:000474873300001
资助机构National Key R&D Program of China ; National Natural Science Foundation of China ; Chinese Academy of Sciences ; Gordon and Betty Moore Foundation ; NASA Terrestrial Ecology Program ; National Science Foundation ; USDA-NIFA
内容类型期刊论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/58539]  
专题中国科学院地理科学与资源研究所
通讯作者Niu, Shuli
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA
4.NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
5.Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
6.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
推荐引用方式
GB/T 7714
Fu, Zheng,Stoy, Paul C.,Poulter, Benjamin,et al. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange[J]. GLOBAL CHANGE BIOLOGY,2019:14.
APA Fu, Zheng.,Stoy, Paul C..,Poulter, Benjamin.,Gerken, Tobias.,Zhang, Zhen.,...&Niu, Shuli.(2019).Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange.GLOBAL CHANGE BIOLOGY,14.
MLA Fu, Zheng,et al."Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange".GLOBAL CHANGE BIOLOGY (2019):14.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace