The Mechanism of Methane Gas Migration Through the Gas Hydrate Stability Zone: Insights From Numerical Simulations
Liu, Jinlong2,3; Haeckel, Matthias3; Rutqvist, Jonny1; Wang, Shuhong; Yan, Wen2
刊名JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
2019
卷号124期号:5页码:4399
关键词fluid flow gas seepage gas migration pathways gas hydrate numerical modeling
ISSN号2169-9313
DOI10.1029/2019JB017417
英文摘要Free gas migration through the gas hydrate stability zone (GHSZ) and subsequent gas seepage at the seabed are characteristic features in marine gas hydrate provinces worldwide. The biogenic or thermogenic gas is typically transported along faults from deeper sediment strata to the GHSZ. Several mechanisms have been proposed to explain free gas transport through the GHSZ. While inhibition of hydrate formation by elevated salinities and temperatures have been addressed previously in studies simulating unfocused, area-wide upward advection of gas, which is not adequately supported by field observations, the role of focused gas flow through chimney-like structures has been underappreciated in this context. Our simulations suggest that gas migration through the GHSZ is, fundamentally, a result of methane gas supply in excess of its consumption by hydrate formation. The required high gas flux is driven by local overpressure, built up from gas accumulating below the base of the GHSZ that fractures the overburden when exceeding a critical pressure, thereby creating the chimney-like migration pathway. Initially rapid hydrate formation raises the temperature in the chimney structure, thereby facilitating further gas transport through the GHSZ. As a consequence, high hydrate saturations form preferentially close to the seafloor, where temperatures drop to bottom water values, producing a prominent subsurface salinity peak. Over time, hydrates form at a lower rate throughout the chimney structure, while initial temperature elevation and salinity peak dissipate. Thus, our simulations suggest that the near-surface salinity peak and elevated temperatures are a result of transient high-flux gas migration through the GHSZ.
内容类型期刊论文
源URL[http://ir.scsio.ac.cn/handle/344004/17958]  
专题南海海洋研究所_中科院边缘海地质重点实验室
作者单位1.GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany
2.Chinese Acad Sci, South China Sea Inst Oceanol, CAS Key Lab Ocean & Marginal Sea Geol, Guangzhou, Guangdong, Peoples R China
3.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
4.Lawrence Berkeley Natl Lab, Berkeley, CA USA
推荐引用方式
GB/T 7714
Liu, Jinlong,Haeckel, Matthias,Rutqvist, Jonny,et al. The Mechanism of Methane Gas Migration Through the Gas Hydrate Stability Zone: Insights From Numerical Simulations[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,2019,124(5):4399, 4427.
APA Liu, Jinlong,Haeckel, Matthias,Rutqvist, Jonny,Wang, Shuhong,&Yan, Wen.(2019).The Mechanism of Methane Gas Migration Through the Gas Hydrate Stability Zone: Insights From Numerical Simulations.JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,124(5),4399.
MLA Liu, Jinlong,et al."The Mechanism of Methane Gas Migration Through the Gas Hydrate Stability Zone: Insights From Numerical Simulations".JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH 124.5(2019):4399.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace