Chemical shift assignments of the catalytic and ATP-binding domain of HK853 from Thermotoga maritime
Liu, Yixiang2; Jiang, Ling2; Liu, Maili2; Li, Conggang2; Liu, Xinghong1,2; Zhou, Yuan1,2
刊名BIOMOLECULAR NMR ASSIGNMENTS
2019-04-01
卷号13期号:1页码:173-176
关键词Chemical shift assignment NMR HK853(CA) Secondary structure HSQC
ISSN号1874-2718
DOI10.1007/s12104-019-09872-3
英文摘要HK853 is a transmembrane protein from Thermotoga maritime, which belongs to HK853/RR468 two-component signal transduction system (TCS) and acts as a sensor histidine kinase. HK853 is mainly composed of a transmembrane domain, dimerization and histidine-containing phosphotransfer domain (HK853(DHp)), catalytic and ATP-binding domain (HK853(CA)) and several linkers. HK853 can be completely autophosphorylated, which is the first step for signal transduction of TCS. HK853(CA) is an essential domain for its kinase function, since HK853(CA) could bind with ATP and convert it to ADP. Here, we report the backbone and part of side chain assignments of HK853(CA). By analyzing the chemical shifts of HN, N, CO, C and C, the secondary structure was predicted and contrasted with the published crystal structure of HK853(CA). The result showed that our predicted structure could basically fit into the crystal structure. Thus, the chemical shift assignments of HK853(CA) are the starting point for further structural and dynamics study.
资助项目National Key R&D Program of China[2017YFA0505400] ; Natural Science Foundation of China[21573280] ; Natural Science Foundation of China[21603268]
WOS关键词BACTERIAL HISTIDINE KINASES ; PHOSPHATASE-ACTIVITY ; SIGNAL-TRANSDUCTION ; 2-COMPONENT
WOS研究方向Biophysics ; Spectroscopy
语种英语
出版者SPRINGER
WOS记录号WOS:000463649500033
资助机构National Key R&D Program of China ; National Key R&D Program of China ; Natural Science Foundation of China ; Natural Science Foundation of China ; National Key R&D Program of China ; National Key R&D Program of China ; Natural Science Foundation of China ; Natural Science Foundation of China ; National Key R&D Program of China ; National Key R&D Program of China ; Natural Science Foundation of China ; Natural Science Foundation of China ; National Key R&D Program of China ; National Key R&D Program of China ; Natural Science Foundation of China ; Natural Science Foundation of China
内容类型期刊论文
源URL[http://ir.wipm.ac.cn/handle/112942/13743]  
专题中国科学院武汉物理与数学研究所
通讯作者Liu, Yixiang
作者单位1.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
2.Chinese Acad Sci, State Key Lab Magnet Resonance & Atom & Mol Phys, Key Lab Magnet Resonance Biol Syst, Natl Ctr Magnet Resonance Wuhan,Wuhan Inst Phys &, Wuhan 430071, Hubei, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yixiang,Jiang, Ling,Liu, Maili,et al. Chemical shift assignments of the catalytic and ATP-binding domain of HK853 from Thermotoga maritime[J]. BIOMOLECULAR NMR ASSIGNMENTS,2019,13(1):173-176.
APA Liu, Yixiang,Jiang, Ling,Liu, Maili,Li, Conggang,Liu, Xinghong,&Zhou, Yuan.(2019).Chemical shift assignments of the catalytic and ATP-binding domain of HK853 from Thermotoga maritime.BIOMOLECULAR NMR ASSIGNMENTS,13(1),173-176.
MLA Liu, Yixiang,et al."Chemical shift assignments of the catalytic and ATP-binding domain of HK853 from Thermotoga maritime".BIOMOLECULAR NMR ASSIGNMENTS 13.1(2019):173-176.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace