CORC  > 过程工程研究所  > 中国科学院过程工程研究所
Tunable nano-interfaces between MnOx and layered double hydroxides boost oxygen evolving electrocatalysis
Xue, Yudong1,2,3,4,5; Fishman, Zachary S.1,3; Rohr, Jason A.1,3; Pan, Zhenhua1,3; Wang, Yunting3; Zhang, Chunhui3; Zheng, Shili2; Zhang, Yi2; Hu, Shu1,3
刊名JOURNAL OF MATERIALS CHEMISTRY A
2018-11-28
卷号6期号:44页码:21918-21926
ISSN号2050-7488
DOI10.1039/c8ta07508e
英文摘要

The development of low overpotential, non-precious metal oxide electrocatalysts is important for sustainable water oxidation using renewable energy. Here we report the fabrication of nano-interfaces between MnOx nanoscale islands and NiFe layered double hydroxide (LDH) nanosheets, which were chosen as baseline electrocatalysts for OER activity tuning. The MnOx nano-islands were grown on the surfaces of NiFe-LDH nanosheets by atomic layer deposition (ALD). Morphological and structural characterization indicated that the MnOx formed flat nanoscale islands which uniformly covered the surfaces of NiFe-LDH nanosheets, giving rise to a large density of threedimensional nano-interfaces at the NiFe-LDH/MnOx/electrolyte multi-phase boundaries. We showed by X-ray spectroscopic characterization that these nano-interfaces induced electronic interactions between NiFe-LDH nanosheets and MnOx nano-islands. Through such modifications, the Fermi level of the original NiFe-LDHwas lowered by donating electrons to the MnOx nano-islands, dramatically boosting the OER performance of these electron-deficient NiFe-LDH catalysts. Using only 10 cycles of ALD MnOx, the MnOx/NiFe-LDH nanocomposites exhibited remarkable and enhanced electrocatalytic activity with an overpotential of 174 mV at 10 mA cm(-2). This work demonstrates a promising pathway for tuning transition metal electrocatalysts via a generic ALD surface modification technique.

资助项目University of Chinese Academy of Sciences[UCAS[2015]37] ; National Natural Science Foundation of China[51774261] ; Office of Naval Research[N00014-18-1-2576]
WOS关键词Water Oxidation ; Manganese Oxide ; Evolution ; Efficient ; Deposition ; Energetics ; Nickel
WOS研究方向Chemistry ; Energy & Fuels ; Materials Science
语种英语
出版者ROYAL SOC CHEMISTRY
WOS记录号WOS:000456724800020
资助机构University of Chinese Academy of Sciences ; National Natural Science Foundation of China ; Office of Naval Research
内容类型期刊论文
源URL[http://ir.ipe.ac.cn/handle/122111/27797]  
专题中国科学院过程工程研究所
通讯作者Zheng, Shili; Hu, Shu
作者单位1.Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA
2.Chinese Acad Sci, Natl Engn Lab Hydrometallurg Cleaner Prod Technol, Key Lab Green Proc & Engn, Inst Proc Engn, Beijing 100190, Peoples R China
3.Yale Univ, Energy Sci Inst, West Haven, CT 06516 USA
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Xue, Yudong,Fishman, Zachary S.,Rohr, Jason A.,et al. Tunable nano-interfaces between MnOx and layered double hydroxides boost oxygen evolving electrocatalysis[J]. JOURNAL OF MATERIALS CHEMISTRY A,2018,6(44):21918-21926.
APA Xue, Yudong.,Fishman, Zachary S..,Rohr, Jason A..,Pan, Zhenhua.,Wang, Yunting.,...&Hu, Shu.(2018).Tunable nano-interfaces between MnOx and layered double hydroxides boost oxygen evolving electrocatalysis.JOURNAL OF MATERIALS CHEMISTRY A,6(44),21918-21926.
MLA Xue, Yudong,et al."Tunable nano-interfaces between MnOx and layered double hydroxides boost oxygen evolving electrocatalysis".JOURNAL OF MATERIALS CHEMISTRY A 6.44(2018):21918-21926.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace