Aerosol effects on the development of cumulus clouds over the Tibetan Plateau
Li, Guohui2; Bei, Naifang3; Liu, Hongli1; Cao, Junji2; Zhou, Xu2,5; Xing, Li2; Lei, Wenfang4; Molina, Luisa T.4
刊名ATMOSPHERIC CHEMISTRY AND PHYSICS
2017-06-20
卷号17期号:12页码:7423-7434
DOI10.5194/acp-17-7423-2017
文献子类Article
英文摘要The aerosol-cloud interaction over the Tibetan Plateau has been investigated using a cloud-resolving weather research and forecasting model with a two-moment bulk microphysical scheme including aerosol effects on cloud condensation nuclei and ice nuclei. Two types of cumulus clouds with a similar convective available potential energy, occurring over the Tibetan Plateau (Cu-TP) and North China Plain (Cu-NCP) in August 2014, are simulated to explore the response of convective clouds to aerosols. A set of aerosol profiles is used in the simulations, with the surface aerosol number concentration varying from 20 to 9000 cm(-3) and the sulfate mass concentration varying from 0.02 to 9.0 mu g cm(-3). Increasing aerosol concentrations generally enhances the cloud core updraft and maximum updraft, intensifying convections in Cu-TP and Cu-NCP. However, the core updraft is much stronger in Cu-TP than Cu-NCP, because of the early occurrence of the glaciation process in Cu-TP that is triggered at an elevation above 4000 m. The precipitation increases steadily with aerosol concentrations in Cu-NCP, caused by the suppression of the warm rain but occurrence of efficient mix-phased precipitation due to the reduced cloud droplet size. The precipitation in Cu-TP also increases with aerosol concentrations, but the precipitation enhancement is not substantial compared to that in Cu-NCP with high aerosol concentrations. The aerosol-induced intensification of convections in Cu-TP not only facilitates the precipitation but also transports more ice-phase hydrometeors into the upper troposphere to decrease the precipitation efficiency. Considering the very clean atmosphere over the Tibetan Plateau, elevated aerosol concentrations can remarkably enhance convections due to its specific topography, which not only warms the middle troposphere to influence the Asian summer monsoon but also delivers hydrometeors into the upper troposphere to allow more water vapor to travel into the lower stratosphere.
WOS关键词SINGLE-PARAMETER REPRESENTATION ; CONDENSATION NUCLEUS ACTIVITY ; DEEP CONVECTIVE CLOUDS ; 3-DIMENSIONAL NUMERICAL-MODEL ; HYGROSCOPIC GROWTH ; PRECIPITATION ; MICROPHYSICS ; IMPACTS ; CLIMATE ; POLLUTION
WOS研究方向Meteorology & Atmospheric Sciences
语种英语
WOS记录号WOS:000403917900007
内容类型期刊论文
源URL[http://ir.ieecas.cn/handle/361006/5443]  
专题地球环境研究所_粉尘与环境研究室
作者单位1.Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Earth Environm, SKLLQG, Key Lab Aerosol Chem & Phys, Xian, Peoples R China
3.Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xian, Shaanxi, Peoples R China
4.Molina Ctr Energy & Environm, La Jolla, CA USA
5.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Guohui,Bei, Naifang,Liu, Hongli,et al. Aerosol effects on the development of cumulus clouds over the Tibetan Plateau[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2017,17(12):7423-7434.
APA Li, Guohui.,Bei, Naifang.,Liu, Hongli.,Cao, Junji.,Zhou, Xu.,...&Molina, Luisa T..(2017).Aerosol effects on the development of cumulus clouds over the Tibetan Plateau.ATMOSPHERIC CHEMISTRY AND PHYSICS,17(12),7423-7434.
MLA Li, Guohui,et al."Aerosol effects on the development of cumulus clouds over the Tibetan Plateau".ATMOSPHERIC CHEMISTRY AND PHYSICS 17.12(2017):7423-7434.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace