Enhanced Crystalline Phase Purity of CH3NH3PbI3-XClX Film for High- Efficiency Hysteresis-Free Perovskite Solar Cells
Yaug, YG; Feng, SL; Xu, WD; Li, M; Li, L; Zhang, XM; Ji, GW; Zhang, XN; Wang, ZK; Xiong, YM
刊名ACS APPLIED MATERIALS & INTERFACES
2017
卷号9期号:27页码:23141-23151
关键词Organolead Halide Perovskite Power Conversion Efficiency Lead Iodide Perovskites X-ray-diffraction High-performance Thin-films Photovoltaic Performance Hole Conductor Graphene Oxide Temperature
ISSN号1944-8244
DOI10.1021/acsami.7b03941
文献子类期刊论文
英文摘要Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d(110)) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH3NH3PbI3-xClx perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH3NH3PbI3-xClx g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO2-based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH3NH3PbI3-xClx perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.
WOS关键词ORGANOLEAD HALIDE PEROVSKITE ; POWER CONVERSION EFFICIENCY ; LEAD IODIDE PEROVSKITES ; X-RAY-DIFFRACTION ; HIGH-PERFORMANCE ; THIN-FILMS ; PHOTOVOLTAIC PERFORMANCE ; HOLE CONDUCTOR ; GRAPHENE OXIDE ; TEMPERATURE
语种英语
WOS记录号WOS:000405764700110
内容类型期刊论文
源URL[http://ir.sinap.ac.cn/handle/331007/28642]  
专题上海应用物理研究所_中科院上海应用物理研究所2011-2017年
推荐引用方式
GB/T 7714
Yaug, YG,Feng, SL,Xu, WD,et al. Enhanced Crystalline Phase Purity of CH3NH3PbI3-XClX Film for High- Efficiency Hysteresis-Free Perovskite Solar Cells[J]. ACS APPLIED MATERIALS & INTERFACES,2017,9(27):23141-23151.
APA Yaug, YG.,Feng, SL.,Xu, WD.,Li, M.,Li, L.,...&Gao, XY.(2017).Enhanced Crystalline Phase Purity of CH3NH3PbI3-XClX Film for High- Efficiency Hysteresis-Free Perovskite Solar Cells.ACS APPLIED MATERIALS & INTERFACES,9(27),23141-23151.
MLA Yaug, YG,et al."Enhanced Crystalline Phase Purity of CH3NH3PbI3-XClX Film for High- Efficiency Hysteresis-Free Perovskite Solar Cells".ACS APPLIED MATERIALS & INTERFACES 9.27(2017):23141-23151.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace