题名串级萃取直角坐标机器人运动学标定问题研究
作者刘玉
学位类别硕士
答辩日期2017-05-24
授予单位中国科学院沈阳自动化研究所
授予地点沈阳
导师隋春平
关键词直角坐标机器人 运动学标定 DH参数法 几何约束 平面约束
其他题名Research on Kinematic Calibration of a Cartesian Coordinate Robot for Cascade Extraction
学位专业机械制造及其自动化
中文摘要对于某逆流萃取串级实验装置,在低成本开发过程中,加工和装配的误差影响着直角坐标机器人的定位精度。直角坐标机器人精准操作作业是实验装置顺利完成实验的关键技术要求之一。为保证实验顺利完成,对直角坐标机器人进行标定是至关重要的。机器人运动学标定是提高机器人定位精度的有效途径。本文针对相关技术要求,从运动学标定的建模、测量和参数辨识三个方面展开了系统研究,并在完成实验装置的控制系统软件设计开发的基础上,开展了相应的实验研究。主要完成的工作如下: (1)结合直角坐标机器人的构型特点,采用DH参数法建立了直角坐标机器人的运动学模型,在对待辨识的参数进行分析简化的基础上,建立了直角坐标机器人的末端位置误差模型,并对误差模型的可辨识性和可观测性进行了分析。 (2)为实现低成本标定,对基于几何约束测量的直角坐标机器人运动学标定展开了系统研究,分别研究了点约束、距离约束、平面约束等情况。建立了基于单平面约束和多平面约束的标定模型,并进行了系统的分析。最后,结合球面约束,提出了应用多个已知姿态的平面约束的标定方法。 (3)根据求解模型的非线性特点,采用基于奇异值分解的非线性最小二乘法迭代求解DH参数误差,并通过仿真验证了所提出的标定方法的有效性。 (4)根据实验流程特点,建立了控制系统软件的数学模型,并基于OPC通信实现直角坐标机器人的驱动和实验装置的各项功能。 (5)在上述理论研究与系统开发工作的基础上,利用所研制的物理样机和标定设备进行了标定实验。实验结果表明所提出的标定方法有效地提高了直角坐标机器人的操作精度。 相关研究工作表明,所提出的已知姿态的多平面约束标定方法,可以实现直角坐标机器人快速、低成本标定,有效提高作业精度。
英文摘要For a counter current extraction cascade experimental device, in the low cost development process, the machining and assembly errors affect the positioning accuracy of the Cartesian coordinate robot. Accurate operation of the Cartesian coordinate robot is one of the key technical requirements for the experiment. In order to ensure the successful completion of the experiment, calibration of Cartesian coordinates is essential. The kinematic calibration of the robot is an effective way to improve the positioning accuracy of the robot. Aiming at the related technical requirements, this paper systematically studies the modeling, measurement and parameter identification of kinematic calibration, and on the basis of the design and development of the control system software of the experimental device, the corresponding experimental research is carried out. The main work are as follows: (1) Based on the structural characteristics of the Cartesian coordinate robot, the kinematic model of the Cartesian coordinate robot is established by DH parameter method. On the basis of analysis and simplification of parameters that need to be identified, the end position error model of the Cartesian coordinate robot is established, and the discernibility and observability of the error model are analyzed. (2) In order to achieve low cost calibration, based on geometric constraint measurement, the kinematic calibration of Cartesian coordinate robot is studied systematically. Point constraints, distance constraints and planar constraints are studied respectively. A calibration model based on single planar constraint and multiplanar constraint is established and analyzed systematically. Finally, using spherical constraints, a calibration method with the known orientation multi-planar constraints is proposed. (3) According to the non-linear characteristics of the model, the non-linear least squares method based on singular value decomposition is used to solve the DH parameter errors, and the validity of the proposed calibration method is verified by simulation. (4) According to the characteristics of process of the experimental, the mathematical model for the control system software is established. Based on the OPC communication, the function of the drive and the experimental device of the Cartesian coordinate robot is realized. (5) On the basis of the above theoretical research and systematic development work, the calibration experiment was carried out by using the developed physical prototype and calibration equipment. The experimental results show that the proposed calibration method can effectively improve the operation accuracy of Cartesian coordinate robot. The related research work shows that the proposed calibration method with the known orientation multi-planar constraints can realize the fast and low cost calibration of Cartesian coordinate robot, and improve the accuracy of the operation.
语种中文
产权排序1
内容类型学位论文
源URL[http://ir.sia.cn/handle/173321/20511]  
专题沈阳自动化研究所_装备制造技术研究室
推荐引用方式
GB/T 7714
刘玉. 串级萃取直角坐标机器人运动学标定问题研究[D]. 沈阳. 中国科学院沈阳自动化研究所. 2017.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace