Manipulating charge density waves in 1T-TaS2 by charge-carrier doping: A first-principles investigation
Shao, D. F.1; Xiao, R. C.1,2; Lu, W. J.1; Lv, H. Y.1; Li, J. Y.1,2; Zhu, X. B.1; Sun, Y. P.1,3,4
刊名PHYSICAL REVIEW B
2016-09-14
卷号94期号:12页码:1-9
DOI10.1103/PhysRevB.94.125126
文献子类Article
英文摘要The transition-metal dichalcogenide 1T-TaS2 exhibits a rich set of charge-density-wave (CDW) orders. Recent investigations suggested that using light or an electric field can manipulate the commensurate CDW (CCDW) ground state. Such manipulations are considered to be determined by charge-carrier doping. Here we use first-principles calculations to simulate the carrier-doping effect on the CCDW in 1T-TaS2. We investigate the charge-doping effects on the electronic structures and phonon instabilities of the 1T structure, and we analyze the doping-induced energy and distortion ratio variations in the CCDW structure. We found that both in bulk and monolayer 1T-TaS2, the CCDWis stable upon electron doping, while hole doping can significantly suppress the CCDW, implying different mechanisms of such reported manipulations. Light or positive perpendicular electric-field-induced hole doping increases the energy of the CCDW, so that the system transforms to a nearly commensurate CDW or a similar metastable state. On the other hand, even though the CCDW distortion is more stable upon in-plane electric-field-induced electron injection, some accompanied effects can drive the system to cross over the energy barrier from the CCDW to a nearly commensurate CDW or a similar metastable state. We also estimate that hole doping can introduce potential superconductivity with a Tc of 6-7 K. Controllable switching of different states such as a CCDW/Mott insulating state, a metallic state, and even a superconducting state can be realized in 1T-TaS2. As a result, this material may have very promising applications in future electronic devices.
WOS关键词INDUCED SUPERCONDUCTIVITY ; TEMPERATURE ; TRANSITION ; INSULATOR ; STATE ; FERROMAGNETISM ; CRYSTAL ; SURFACE ; DRIVEN
WOS研究方向Physics
语种英语
WOS记录号WOS:000383146200004
资助机构National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Key Research and Development Program(2016YFA0300404) ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; National Nature Science Foundation of China(11674326 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11304320 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11274311 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 11404340 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; 1408085MA11 ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; U1232139) ; U1232139)
内容类型期刊论文
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/22128]  
专题合肥物质科学研究院_中科院固体物理研究所
合肥物质科学研究院_中科院强磁场科学中心
作者单位1.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
2.Univ Sci & Technol China, Hefei 230026, Peoples R China
3.Chinese Acad Sci, High Magnet Field Lab, Hefei 230031, Peoples R China
4.Nanjing Univ, Collaborat Innovat Ctr Microstruct, Nanjing 210093, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Shao, D. F.,Xiao, R. C.,Lu, W. J.,et al. Manipulating charge density waves in 1T-TaS2 by charge-carrier doping: A first-principles investigation[J]. PHYSICAL REVIEW B,2016,94(12):1-9.
APA Shao, D. F..,Xiao, R. C..,Lu, W. J..,Lv, H. Y..,Li, J. Y..,...&Sun, Y. P..(2016).Manipulating charge density waves in 1T-TaS2 by charge-carrier doping: A first-principles investigation.PHYSICAL REVIEW B,94(12),1-9.
MLA Shao, D. F.,et al."Manipulating charge density waves in 1T-TaS2 by charge-carrier doping: A first-principles investigation".PHYSICAL REVIEW B 94.12(2016):1-9.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace