2-port internal model control for gyro stabilized platform of electro-optical tracking system
Xia, Yun-Xia1,2; Bao, Qi-Liang1; Li, Zhi-Jun1; Wu, Qiong-Yan1
2012
会议名称Proceedings of SPIE: Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI
会议日期2012
卷号8395
页码83950M
通讯作者Xia, Y.-X.
中文摘要Line-of-sight stabilized system, which can be used to isolate the vibration of the moving bed and the disturbance of environment, is the most important part of an electro-optical tracking system. The steady precision and robustness are the key issues of recent researches. In this paper, a novel control approach so called 2-Port Internal Model Control (2-PIMC) for line-of-sight stabilized system is proposed. By adding a parallel feedback control loop on the basis of Internal Model Control (IMC), the 2-PIMC method can improve precision while it also has strong robustness as the IMC. The robustness and the static error of 2-PIMC method were subsequently analyzed. Based on this novel method, Simulation and experiment are both carried out for a gyro stabilized platform of electro-optical tracking system. The experiments include a shaking table which can generate disturbance as the moving bed and a gyro stabilized platform which is mounted on the shaking table. The experimental result indicated that the gyro stabilized platform using 2-PIMC method is accurate and effective. Comparing with PI control, the following error and disturbance restraining error were both greatly improved at low-frequency and mid-frequency by the 2-PIMC method proposed. The improvement of precision is more than 10dB at 4Hz. In addition, the 2-PIMC method doesn't need any extra sensors for the platform and it's easy for parameters regulation. It can be concluded that the2-PIMC method is a new approach for the high-performance gyro stabilized platform and might have broad application prospect. © 2012 SPIE.
英文摘要Line-of-sight stabilized system, which can be used to isolate the vibration of the moving bed and the disturbance of environment, is the most important part of an electro-optical tracking system. The steady precision and robustness are the key issues of recent researches. In this paper, a novel control approach so called 2-Port Internal Model Control (2-PIMC) for line-of-sight stabilized system is proposed. By adding a parallel feedback control loop on the basis of Internal Model Control (IMC), the 2-PIMC method can improve precision while it also has strong robustness as the IMC. The robustness and the static error of 2-PIMC method were subsequently analyzed. Based on this novel method, Simulation and experiment are both carried out for a gyro stabilized platform of electro-optical tracking system. The experiments include a shaking table which can generate disturbance as the moving bed and a gyro stabilized platform which is mounted on the shaking table. The experimental result indicated that the gyro stabilized platform using 2-PIMC method is accurate and effective. Comparing with PI control, the following error and disturbance restraining error were both greatly improved at low-frequency and mid-frequency by the 2-PIMC method proposed. The improvement of precision is more than 10dB at 4Hz. In addition, the 2-PIMC method doesn't need any extra sensors for the platform and it's easy for parameters regulation. It can be concluded that the2-PIMC method is a new approach for the high-performance gyro stabilized platform and might have broad application prospect. © 2012 SPIE.
收录类别EI
语种英语
ISSN号0277786X
内容类型会议论文
源URL[http://ir.ioe.ac.cn/handle/181551/7390]  
专题光电技术研究所_光电工程总体研究室(一室)
作者单位1.Institute of Optics and Electronics, Chinese Academy of Science, Chengdu 610209, China
2.Graduate School of Chinese Academy of Science, Beijing 100039, China
推荐引用方式
GB/T 7714
Xia, Yun-Xia,Bao, Qi-Liang,Li, Zhi-Jun,et al. 2-port internal model control for gyro stabilized platform of electro-optical tracking system[C]. 见:Proceedings of SPIE: Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI. 2012.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace