CORC  > 电工研究所  > 其他部门  > 博士学位论文
题名混合微能源系统关键技术及应用; 混合微能源系统关键技术及应用
作者1于红云,电工研究所
学位类别博士
答辩日期2008-06-10
授予单位中国科学院电工研究所
导师1李艳秋,电工研究所
关键词光伏电池 温差电池 微能源 超级电容器 无线传感器网络 Solar cells thermoelectric generators micro power ultracapacitor wireless sensor networks
其他题名混合微能源系统关键技术及应用
中文摘要无线传感器网络具有多跳性、能够自组织网络、无需基础设施支持的优点,在军事、民用领域都有着广阔的应用前景。然而,传感器网络节点数目庞大,分布区域广、部署环境复杂或危险,无法利用人工更换电池的方式来补充电能。本文针对传感器网络的应用需求,研究了混合微能源系统的能量转换、储能、能源管理关键技术,研制了混合微能源系统,并进行了实验测试和性能分析。 首先,进行了能量转换技术的研究,包括光电转换技术、热电转换技术和光伏-温差混合能量转换技术。介绍了光伏电池的工作原理和光电特性,实验研究了光伏电池的热效应及其对性能的影响;介绍了温差电池的工作原理和热电特性,并测试了温差电池组件的性能;分析和研究了光伏-温差混合能量转换技术和性能优化方法,并进行了实验研究。研究结果证明,温差电池能够将光伏电池的热能转化为电能,并能够降低光伏电池的温度,减少温度升高对光伏电池性能的影响。 其次,进行了储能技术的研究,包括锂离子电池储能技术、超级电容器储能技术和锂离子电池-超级电容器混合储能技术。介绍了锂离子电池的工作原理和充放电特性,给出了锂离子电池保护电路的设计和实验结果分析;利用锂离子电池和超级电容器性能上的互补性,设计了混合储能系统,通过仿真分析和实验测试证明,混合储能系统能够提高功率输出能力,延长储能系统使用寿命。 然后,进行了能源管理技术的研究。为了实现高度集成自治MEMS系统,设计了片上集成的微能源管理电路,电路能够实现锂离子电池充/放电保护功能和防反充功能,仿真结果证明,管理电路实现了低功耗,适合用于片上微能源系统。 最后,对混合微能源系统进行了研制和性能测试。由于超级电容器的作用,锂离子电池的充/放电过程得到了明显优化;温差电池能够将光伏电池的热能转换成电能为超级电容器充电;光伏电池为传感器节点供电,多余能量存储于储能子系统中,无日照条件下,储能子系统单独为节点供电。实验结果证明,混合微能源系统能够解决传感器网络的能源问题,实现长寿命工作。 Wireless sensor network has the virtues of multi-hop, self-organization and infrastructureless, so it can offer many useful applications in military and civil field. However, so many tiny sensor nodes are distributed widely at the dangerous or complex topography, that there is no way to change batteries to supply energy. To solve this energy problem, the key technologies of hybrid micro power system were studies, including energy conversion technology, energy storage technology and energy management technology. The hybrid micro power system was developed, tested and analyzed. At first, the study of energy conversion technology was carried out, involves photovoltaic technology, thermoelectric technology and photovoltaic-thermoelectric hybrid energy conversion technology. The work principle and the photoelectric characteristics of solar cells were presented. The temperature rise of the solar cells was tested, and its impact on solar cells’ performance was studied. The work principle and thermoelectric characteristics of the thermoelectric generators were introduced, and the performance of the thermoelectric generators was tested. The study of photovoltaic-thermoelectric hybrid energy conversion technology was carried out. Study results demonstrate the thermoelectric generators can convert solar cells’ heat energy to electric energy, and reduce the impact of the temperature rise on solar cells’ performance. Secondly, the study of energy storage technology was carried out, involves lithium ion battery energy storage technology, ultracapacitor energy storage technology, lithium ion battery-ultracapacitor hybrid energy storage technology. According to the lithium ion battery’s characteristics, the protection circuit was designed and experimental studied. The lithium ion battery-ultracapacitor hybrid energy storage system was designed, according to the characteristics of the lithium ion battery and ultracapacitor. Study results demonstrate the lithium ion battery-ultracapacitor hybrid energy storage technology can improve the power of the energy storage system, extend the lifetime of the energy storage system. Thirdly, the study of the energy management technology was carried out. Further, the study on the energy management technology for the on-chip micro power system was carried out to attain the miniature, integrated and autonomous MEMS. The energy management circuit can realize lithium ion battery protection and reverse charge prevention. The simulation results demonstrate the energy management circuit’s power is low and it is adapted to the on-chip micro power system. Lastly, the hybrid micro power system was developed, tested and analyzed. Due to the function of the ultracapacitor, the charge/discharge process of the lithium ion battery was optimized evidently. The thermoelectric generators can convert solar cells’ heat energy to electric energy to charge ultracapacitor. Solar cells supplied electric energy to sensor node and remained energy charge the energy storage subsystem. The energy storage subsystem supplied electric energy to sensor node while no sunlight. Study results demonstrate that the hybrid micro power system can solve the energy problem for wireless sensor network.
语种中文
公开日期2010-10-18
页码110
分类号TM1
内容类型学位论文
源URL[http://ir.iee.ac.cn/handle/311042/6786]  
专题电工研究所_其他部门_其他部门_博士学位论文
推荐引用方式
GB/T 7714
1于红云,电工研究所. 混合微能源系统关键技术及应用, 混合微能源系统关键技术及应用[D]. 中国科学院电工研究所. 2008.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace