题名微小视频卫星光学系统设计与杂散光分析
作者韩培仙
学位类别硕士
答辩日期2015-10
授予单位中国科学院大学
导师金光
关键词两镜折反式光学系统 类曼金反射镜 轴向梯度折射率透镜 光学设计 遮光系统设计
其他题名Optical System Design and Stray Light Analysis of Micro Video-capable Satellite
学位专业光学工程
中文摘要视频卫星一种新型对地观测卫星,其中一类采用面阵探测器,综合利用平台的高敏捷能力从而实现“凝视”的低轨道微小视频卫星得到了蓬勃发展。低轨道微小视频卫星质量轻、体积小,其成像光学系统多选用长焦距、宽视场的折反式光学系统。本文以低轨道微小视频卫星的光学系统为研究目标,采用类曼金反射镜和单片轴向梯度折射率透镜分别作为两镜折反式光学系统的次镜和校正镜,优化了光学系统设计,简化了光学系统结构。 本文主要包含以下几个方面: 1) 介绍了国内外微小视频卫星的发展,分析总结了微小视频卫星的光学系统指标要求,确定了光学系统的基本结构,设计了满足系统设计指标的两镜折反式光学系统。 2) 针对微小视频卫星两镜折反式光学系统次镜非球面度过高的问题,在光学系统的设计中,加入了类曼金反射镜做为两镜折反式光学系统的次镜。带有类曼金反射镜的光学系统,体积更小,加工周期更短,成像质量更优良,满足微小视频卫星光学系统的指标要求。 3) 针对微小视频卫星两镜折反式光学系统校正镜组透镜数量过多的问题,在本章的光学系统设计中,采用了单片轴向梯度折射率透镜做为两镜折反式光学系统的校正镜。首次提出了带有单片轴向梯度折射率校正镜的两镜折反式光学系统初始结构设计的初级像差理论计算方法。本设计开辟了两镜折反式光学系统的轻量化、简捷化的新思路,将相同设计指标的两镜系统中的3片均匀材料透镜减少为单片轴向梯度折射率透镜。 4) 对两镜折反式光学系统做杂散光分析。通过三维制图软件Unigraphics(UG)模拟仿真得到光学系统3D建模,并且设计了百叶窗式次镜遮光罩、主镜内遮光罩、光学系统的外遮光罩。将光机模型导入Tracepro软件通过设置不同离轴角度的光源,计算系统不同离轴角度对应的PST值,分析结果显示,建立的光机系统杂散光抑制能力已经达到设计要求。 本论文设计了满足微小视频卫星光学相机指标的两镜折反式光学系统,并且分别采用类曼金反射镜、轴向梯度折射率薄透镜给出了两种优化设计,并且总结推导了带有单片轴向梯度折射率透镜的两镜折反式光学系统初始结构设计方法。通过3D建模,设计了相机的遮光系统,并且导入杂散光分析软件Tracepro分析得到遮光系统已经满足设计要求。
英文摘要The video-capable satellite is a new type of earth observation satellite. One class of low orbit micro video-capable satellites with flat panel detector are booming. These satellites comprehensive utilize the advanced agile satellite platform to realize staring observation. The low orbit micro video-capable satellite has a light weight and small size. Its imaging optical system is refractive/reflective system with long focal length and wide field of view. The optical system designed in this paper simplifies the optical system structure of the micro video satellite, and the design of the shading system could meet the requirements of eliminating stray light. The main content of this dissertation are that: 1) In this paper, the development of micro video-capable satellite at home and abroad was introduced, and the optical system parameters were analyzed and summarized. The basic structure of the optical system was determined, and the two mirror optical system was designed to meet the requirements of the system design. 2) In order to reduce the asphericity of the secondary mirror of two-mirror refractive/reflective system, I designed an optical system with a Margin-like mirror as the secondary mirror. The optical system with a Margin-like mirror smaller size, shorter processing cycle, better imaging quality, met the requirements of micro video satellite optical system. 3) In order to reduce the number of the correcting refracted lens, I designed an optical system with only one axial gradient-index (AGRIN) lens as correcting refracted lens. This design had opened up a new idea of the two-mirror refractive/reflective system for lighter and simpler. In this design, a single axial gradient index lens was used instead of 3 pieces of uniform material lenses. 4) Stray light analysis of two-mirror refractive/reflective optical system was given. Its opto-mechanic model was established with Unigraphics (UG) software. And lens hood in the main mirror, lens hood outside and window shade, lens hool in the secondly mirror were designed by UG modeling, too. This design result was tested by light tracing in simulating software Tracepro, which showed the PST value of every view meet the requirements. This proved the feasibility of the stray light eliminating design. In this paper, I designed two-mirror refractive/reflective system which meet micro video-capable satellite optical camera index. And I have given two optimum design methods, which used the Margin-like mirror and the AGRIN lens respectively. Through opto-mechanic model, the shading system of the camera was designed. This design result was tested to meet the design requirements by light tracing in simulating software Tracepro.
语种中文
公开日期2016-05-03
内容类型学位论文
源URL[http://ir.ciomp.ac.cn/handle/181722/49279]  
专题长春光学精密机械与物理研究所_中科院长春光机所知识产出
推荐引用方式
GB/T 7714
韩培仙. 微小视频卫星光学系统设计与杂散光分析[D]. 中国科学院大学. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace