题名高数值孔径投影光刻物镜的光学设计
作者徐明飞
学位类别博士
答辩日期2015-05
授予单位中国科学院大学
导师黄玮
关键词光学设计 投影光刻物镜 高数值孔径 像质补偿 偏振像差
其他题名Optical Design for the Hyper Numerial Aperture Lithographic Lens
学位专业光学
中文摘要大规模集成电路工业化生产的核心设备是光刻机,而光刻机的核心分系统是投影光刻物镜。本文针对45 nm节点深紫外(DUV)投影光刻机的研发,开展高数值孔径(NA)浸没式投影光刻物镜的光学设计与仿真;即综合照明光源、光学材料、光学加工、光学检测以及机械结构等各项技术要求,完成NA≥1.30,工作波长为193 nm的投影光刻物镜光学设计;同时研究投影光刻物镜的像质补偿措施和偏振像差分析方法。 目前国际上最先进的193 nm投影光刻物镜都是折反式(Catadioptric)系统,其元件数目超过25个(包含多个非球面元件),像方视场达到26 mm×5.5 mm,波像差小于1 nm RMS。作为现代最精密、最复杂的光学系统,投影光刻物镜涵盖了光学、机械、计算机、电子学等多个学科领域最前沿、最尖端的技术。针对投影光刻物镜的光学设计,单纯的依靠脑力和经验已经不足完成任务,必须采用专业的光学设计软件进行优化设计。 针对高NA投影光刻物镜的设计优化及其相关内容,本文主要开展了以下工作: 一、光学设计。首先,研究投影光刻物镜的像质评价方法,给出高NA投影光刻物镜的光学设计指标和基本输入参数。然后,结合国际上高NA投影光刻物镜的实现方式,选择两种结构方案进行设计优化;对设计结果作出优选并对优选结果进行详细的像质分析。最后,提出了波像差自动平衡算法,降低高NA投影光刻物镜的最大波像差。 二、像质补偿。首先,研究基于Zernike系数的公差敏感度分析,并以此为基础对低阶像差和高阶像差的补偿方法进行归类。然后,研究光学复算原理和旋转(Clocking)补偿算法;研究计算机辅助装调技术,包括补偿器的选择和补偿量的计算。最后,针对投影光刻物镜的设计结果,对光学复算和计算机辅助装调进行了模拟仿真。 三、偏振像差研究。首先,讨论标量成像和矢量成像的联系与区别,指出矢量成像理论更适用于高NA投影光刻物镜。然后,阐述穆勒矩阵和琼斯矩阵各自描述偏振像差时的优缺点,并研究琼斯矩阵的奇异值分解方法,进而简化琼斯光瞳并使其物理意义更加明确。最后,对高NA投影光刻物镜的全视场偏振像差进行分析。 最终的设计结果和分析表明,本文的光学设计方案,像质补偿措施以及偏振像差分析方法,可为45 nm节点高NA投影光刻物镜的研制提供有益的理论依据和指导。
英文摘要Exposure tool lies in the core of the large-scale integrated circuit manufacturing devices, and the kernel of the exposure tool is lithographic lens which duplicate the pattern from the mask to the wafer. This paper devotes to optical design and simulation of high numerical aperture (NA) immersion lithographic lens, which is aimed for equipping deep ultra-violet (DUV) scanner with 45nm critical dimension. The lens is specified by NA≥1.30, and working wavelength at 193nm. In order to meet the preceding target, the necessary considerations for works include illumination light, optical material, optical fabrication, optical test and mechanical structure scheme. Meanwhile, we also develop methods on imaging performance compensation and polarization aberrations analysis strategies. The most advanced 193nm projection lenses are almost all of catadiopric type, which usually contains more than 25 components (several aspheric elements included), with a field of view (FOV) of 26 mm×5.5 mm and wavefront error RMS less than 1nm. Research on lithographic lens involves cutting edges in a variety of subjects, including optics, mechanics, compute science and electronics, etc. It is impossible to design a modern lithographic lens just simply rely on brain power and experience. It is necessary to use of modern commercial optical design software to aid the optical design for 193nm exposure system. In accordance with the destination of designing qualified projection lens and related research, a great of energy is focused on the following contents. 1. Optical design: First of all, determine system specifications and input parameters and doing research on methods for evaluating the performance of the lens. Secondly, among the general configurations existed, select 2 suited types as starting point to optimizing, and after contrasting the two optimizing results, select more promised one to continue on detailed analysis works. Finally, come up with an aberration auto-balancing algorithm to reduce the maximum wavefront errors of the high NA lithographic lens. 2. Imaging performance compensation: Firstly, conduct analysis on tolerance sensitivity based on Zernike coefficients decomposition, and categorize the compensation methods in according with low-order and high-order aberrations. Secondly, innovate on optical recomputation and element clocking compensation algorithm, promote techniques of computer aided assembly adjustment, including how to choose the compensators wisely and to find out compensation rate. Lastly, simulate optical recomputation and computer aided assembly adjustment based on the completed lens design. 3. Research on polarization aberrations: At the beginning, discuss the differences and connections between vectorial and scalar theorems of imaging, and draw the conclusion that the former is necessary when aiming at high NA lithographic lens. Then, into commonly used math for describing the polarization characteristics of various optical components, which including Jones matrix and Muller matrix specifically, we will analyze their respective con and pro when it comes to describe polarization aberrations. The method of singular value decomposition (SVD) for Jones matrix is emphasized during the process, so as to simplify the Jones pupil and make it more physically intuitive. At last, we analyze the polarization aberrations of full FOV of the lithographic lens. The final results and simulation analysis show that, the lens design form, methods of imaging performance compensation and analytical methods regarding polarization aberrations have provided advantageous theoretical guidance and basis for research and development of 45nm critical dimension lithographic lens.
公开日期2015-12-24
内容类型学位论文
源URL[http://ir.ciomp.ac.cn/handle/181722/48929]  
专题长春光学精密机械与物理研究所_中科院长春光机所知识产出
推荐引用方式
GB/T 7714
徐明飞. 高数值孔径投影光刻物镜的光学设计[D]. 中国科学院大学. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace